Where Did I Go Wrong in Calculating the Value of x in These Triangle Problems?

  • Context: MHB 
  • Thread starter Thread starter eleventhxhour
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the calculation of the value of x in two triangle problems using the sine law. Participants analyze their approaches to solving the problems and compare their results with those provided in a textbook.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant describes their method for problem 3a, using the sine law and arriving at an answer of 12.2 cm, while the textbook states the answer is 15 cm.
  • For problem 3b, the same participant calculates x as 48.2 cm, conflicting with the textbook's answer of 37.9 cm.
  • Another participant provides their calculations for both problems, arriving at approximately 15 cm for 3a and 38 cm for 3b, asserting that the textbook is correct but expressing uncertainty about the first participant's application of the sine law.
  • A later reply revisits problem 3b, confirming the use of the sine law and providing a detailed breakdown of the calculations, including the angles involved in the isosceles triangle.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct values for x in the triangle problems. There are multiple competing views regarding the application of the sine law and the resulting calculations.

Contextual Notes

Some calculations depend on the correct identification of angles and the application of the sine law, which remains a point of contention among participants.

eleventhxhour
Messages
73
Reaction score
0
View attachment 2480

3) Determine the value of x to the nearest centimetre.

So for 3a) I found the angles of each of the sides by subtracting 180 (D is 55 on the first triangle, and 45 degrees on the second). Then I found "f" (the side opposite angle F) by using the Sine law, and I got 18cm. Then I used the sine law to find the length of the dashed line and I got 8.6cm. Then with this, I used the sine law again to calculate x. In the end, I got 12.2 cm. However, the answer in the textbook is 15cm. What did I do wrong?

For 3b, I did something similar. I found that the smaller triangle is isosceles, so the angles are: D is 70 degrees, B is 40 degrees and the one that isn't labelled is also 70 degrees. On the bigger triangle, angle B is 63 degrees. Then I used the sine law to calculate the horizontal line from B. I got 21.9cm. Then I used the sine law again to calculate x, which I found to be 48.2. However, the textbook says that x = 37.9cm. What did I do wrong?

Thanks!
 

Attachments

  • 20140513_180009.jpg
    20140513_180009.jpg
    6.2 KB · Views: 134
Mathematics news on Phys.org
For 3a) I get:

$$x=\frac{15\sqrt{2}\sin\left(35^{\circ}\right)}{\sin\left(55^{\circ}\right)}\text{ cm}\approx15\text{ cm}$$

For 3b) I get:

$$x=\frac{15\sin\left(70^{\circ}\right)}{\sin\left(27^{\circ}\right)\sin\left(55^{\circ}\right)}\text{ cm}\approx38\text{cm}$$

Your textbook is correct. I am unsure what you've done...you say you applied the sine law, but how you applied it I am not sure.
 
MarkFL said:
For 3a) I get:

$$x=\frac{15\sqrt{2}\sin\left(35^{\circ}\right)}{\sin\left(55^{\circ}\right)}\text{ cm}\approx15\text{ cm}$$

For 3b) I get:

$$x=\frac{15\sin\left(70^{\circ}\right)}{\sin\left(27^{\circ}\right)\sin\left(55^{\circ}\right)}\text{ cm}\approx38\text{cm}$$

Your textbook is correct. I am unsure what you've done...you say you applied the sine law, but how you applied it I am not sure.

Alright, so I did 3a) again and got the correct answer. But I'm still getting around 48cm for 3b). Here's what I did:

View attachment 2481
 

Attachments

  • 3b.jpg
    3b.jpg
    8.3 KB · Views: 135
You can only apply the Pythagorean theorem to right triangles. The isosceles triangle has a $70^{\circ}$, and therefore the other two equal angles $\theta$ are:

$$70^{\circ}+2\theta=180^{\circ}$$

$$2\theta=110^{\circ}$$

$$\theta=55^{\circ}$$

And so, using the Law of Sines, we find:

$$\frac{\overline{BC}}{\sin\left(70^{\circ}\right)}=\frac{15}{\sin\left(55^{\circ}\right)}$$

Hence:

$$\overline{BC}=\frac{15\sin\left(70^{\circ}\right)}{\sin\left(55^{\circ}\right)}$$

Now, using the definition of the sine function, we find:

$$\sin\left(27^{\circ}\right)=\frac{\overline{BC}}{x}$$

$$x=\frac{\overline{BC}}{\sin\left(27^{\circ}\right)}=\frac{15\sin\left(70^{\circ}\right)}{\sin\left(27^{\circ}\right)\sin\left(55^{\circ}\right)}$$
 

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
6
Views
2K
Replies
2
Views
2K