Where is the Center of Mass of a Thin Plate with Given Boundaries?

Click For Summary

Discussion Overview

The discussion revolves around finding the center of mass of a thin plate with a specified density and bounded by certain curves in the first quadrant. Participants explore the calculations for mass and moments, as well as the implications of their results.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a formulaic approach to calculate the center of mass, providing equations for mass and first moments, and states a result for the center of mass.
  • Another participant attempts to recalculate the mass and moments, expressing confusion about the results and indicating that something is not correct.
  • A third participant provides a detailed calculation for mass and moments, arriving at a consistent result for the center of mass, which matches the earlier stated values.
  • One participant expresses frustration about a graph they created, suggesting a potential issue with their understanding or representation of the problem.
  • Another participant clarifies that the boundary condition involving the line $x=0$ refers to the y-axis, correcting a misunderstanding in the sketch of the bounded area.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the calculations, as there are conflicting interpretations and results presented. Some participants agree on the final values for the center of mass, while others express uncertainty and confusion regarding the calculations and graphical representations.

Contextual Notes

There are indications of missing assumptions or misunderstandings regarding the boundaries of the region, particularly the identification of the axes in the sketches. The calculations also depend on the correct interpretation of the bounded area.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the center of mass of a thin plate of density}$
$\textsf{ $\delta=3$ bounded by the lines $x=0, y=x$, and the parabola
$y=2-x^2$ in the $Q1$}$
$\begin{array}{llcr}\displaystyle
&\textit{Mass}\\
&&\displaystyle M=\iint\limits_{R}\delta \, dA\\
&\textit{First Moments}\\
&&\displaystyle M_y=\iint\limits_{R}x\delta \, dA
&\displaystyle M_x=\iint\limits_{R}y\delta \, dA\\
&\textit{Center of mass}\\
&&\displaystyle\bar{x}=\displaystyle\frac{M_y}{M},
\displaystyle\bar{y}=\displaystyle\frac{M_x}{M}\\
\\
&&\color{red}
{\displaystyle \, \bar{x}=\frac{5}{14},
\bar{y}=\displaystyle\frac{38}{35}}\\
\end{array}$ok I just barely had to time to post this
equations are just from reference
red is answer
 
Physics news on Phys.org
Ok I'm starting over on this a small step at a time...

$\textsf{Find the center of mass of a thin plate of density}\\$
$\textsf{$\delta=3$ bounded by the lines $x=0, y=x$, and the parabola
$y=2-x^2$ in $Q1$}\\$
\begin{align*}\displaystyle
M&=\int_{0}^{\sqrt{2}}\int_{2-x^2}^{1}3 \, dy \, dx\\
&=3\int_{0}^{\sqrt{2}}\biggr[y\biggr]_{y=2-x^2}^{y=1}\, dx
=3\int_{0}^{\sqrt{2}}(x^2-1) \, dx
=3\biggr[\frac{x^3}{3}-x\biggr]_0^{\sqrt{2}}=\sqrt{2}\\
M_y&=\int_{0}^{\sqrt{2}}\int_{2-x^2}^{1} \, dy \, dx
=\int_{0}^{\sqrt{2}}\biggr[y\biggr]_{y=2-x^2}^{y=1}\, dx\\
&=\int_{0}^{\sqrt{2}}(x^2-1) \, dx = -\sqrt{2}\\
\end{align*}

something isn't happening right!


$\textsf{the answer utimately is:}\\$
$\color{red}{\, \bar{x}=\displaystyle\frac{5}{14},\bar{y}=\frac{38}{35}}$
 
Last edited:
The first thing I would do is sketch the bounded area:

View attachment 7772

Now, let's compute the mass (noting that the curves $y=x$ and $y=2-x^2$ intersect at $x=1$ in QI):

$$m=\rho A=3\int_{0}^{1}\int_{x}^{2-x^2}\,dy\,dx=3\int_{0}^{1}2-x-x^2\,dx=3\left(2-\frac{1}{2}-\frac{1}{3}\right)=\frac{7}{2}$$

Next, let's compute the moments of the lamina:

$$M_x=3\int_{0}^{1}\int_{x}^{2-x^2}y\,dy\,dx=\frac{3}{2}\int_{0}^{1}\left(2-x^2\right)^2-x^2\,dx=\frac{3}{2}\int_{0}^{1}x^4-5x^2+4\,dx=\frac{19}{5}$$

$$M_y=3\int_{0}^{1}x\int_{x}^{2-x^2}\,dy\,dx=3\int_{0}^{1}2x-x^2-x^3\,dx=\frac{5}{4}$$

Hence:

$$\overline{x}=\frac{M_y}{m}=\frac{\frac{5}{4}}{\frac{7}{2}}=\frac{5}{14}$$

$$\overline{y}=\frac{M_x}{m}=\frac{\frac{19}{5}}{\frac{7}{2}}=\frac{38}{35}$$
 

Attachments

  • karush_com_001.png
    karush_com_001.png
    3.2 KB · Views: 151

Attachments

  • Capture+_2018-02-12-17-31-00-1.png
    Capture+_2018-02-12-17-31-00-1.png
    5.1 KB · Views: 143
karush said:
$\textsf{Find the center of mass of a thin plate of density}$
$\textsf{ $\delta=3$ bounded by the lines $\color{red}{x=0}$, $ y=x$, and the parabola
$y=2-x^2$ in the $Q1$}$

$\color{red}{x=0}$ is the y-axis as shown in Mark’s sketch, not the x-axis as shown in your sketch.
 

Similar threads

Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K