MHB Where is the Center of Mass of a Thin Plate with Given Boundaries?

AI Thread Summary
The discussion focuses on calculating the center of mass for a thin plate with a density of 3, bounded by the lines x=0, y=x, and the parabola y=2-x^2 in the first quadrant. The mass is computed using double integrals, leading to a total mass of 7/2. The moments M_x and M_y are calculated to find the coordinates of the center of mass, resulting in \(\bar{x} = \frac{5}{14}\) and \(\bar{y} = \frac{38}{35}\). Participants emphasize the importance of accurately sketching the bounded area to avoid confusion in calculations. The final confirmed center of mass coordinates are \(\bar{x} = \frac{5}{14}\) and \(\bar{y} = \frac{38}{35}\).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the center of mass of a thin plate of density}$
$\textsf{ $\delta=3$ bounded by the lines $x=0, y=x$, and the parabola
$y=2-x^2$ in the $Q1$}$
$\begin{array}{llcr}\displaystyle
&\textit{Mass}\\
&&\displaystyle M=\iint\limits_{R}\delta \, dA\\
&\textit{First Moments}\\
&&\displaystyle M_y=\iint\limits_{R}x\delta \, dA
&\displaystyle M_x=\iint\limits_{R}y\delta \, dA\\
&\textit{Center of mass}\\
&&\displaystyle\bar{x}=\displaystyle\frac{M_y}{M},
\displaystyle\bar{y}=\displaystyle\frac{M_x}{M}\\
\\
&&\color{red}
{\displaystyle \, \bar{x}=\frac{5}{14},
\bar{y}=\displaystyle\frac{38}{35}}\\
\end{array}$ok I just barely had to time to post this
equations are just from reference
red is answer
 
Mathematics news on Phys.org
Ok I'm starting over on this a small step at a time...

$\textsf{Find the center of mass of a thin plate of density}\\$
$\textsf{$\delta=3$ bounded by the lines $x=0, y=x$, and the parabola
$y=2-x^2$ in $Q1$}\\$
\begin{align*}\displaystyle
M&=\int_{0}^{\sqrt{2}}\int_{2-x^2}^{1}3 \, dy \, dx\\
&=3\int_{0}^{\sqrt{2}}\biggr[y\biggr]_{y=2-x^2}^{y=1}\, dx
=3\int_{0}^{\sqrt{2}}(x^2-1) \, dx
=3\biggr[\frac{x^3}{3}-x\biggr]_0^{\sqrt{2}}=\sqrt{2}\\
M_y&=\int_{0}^{\sqrt{2}}\int_{2-x^2}^{1} \, dy \, dx
=\int_{0}^{\sqrt{2}}\biggr[y\biggr]_{y=2-x^2}^{y=1}\, dx\\
&=\int_{0}^{\sqrt{2}}(x^2-1) \, dx = -\sqrt{2}\\
\end{align*}

something isn't happening right!


$\textsf{the answer utimately is:}\\$
$\color{red}{\, \bar{x}=\displaystyle\frac{5}{14},\bar{y}=\frac{38}{35}}$
 
Last edited:
The first thing I would do is sketch the bounded area:

View attachment 7772

Now, let's compute the mass (noting that the curves $y=x$ and $y=2-x^2$ intersect at $x=1$ in QI):

$$m=\rho A=3\int_{0}^{1}\int_{x}^{2-x^2}\,dy\,dx=3\int_{0}^{1}2-x-x^2\,dx=3\left(2-\frac{1}{2}-\frac{1}{3}\right)=\frac{7}{2}$$

Next, let's compute the moments of the lamina:

$$M_x=3\int_{0}^{1}\int_{x}^{2-x^2}y\,dy\,dx=\frac{3}{2}\int_{0}^{1}\left(2-x^2\right)^2-x^2\,dx=\frac{3}{2}\int_{0}^{1}x^4-5x^2+4\,dx=\frac{19}{5}$$

$$M_y=3\int_{0}^{1}x\int_{x}^{2-x^2}\,dy\,dx=3\int_{0}^{1}2x-x^2-x^3\,dx=\frac{5}{4}$$

Hence:

$$\overline{x}=\frac{M_y}{m}=\frac{\frac{5}{4}}{\frac{7}{2}}=\frac{5}{14}$$

$$\overline{y}=\frac{M_x}{m}=\frac{\frac{19}{5}}{\frac{7}{2}}=\frac{38}{35}$$
 

Attachments

  • karush_com_001.png
    karush_com_001.png
    3.2 KB · Views: 129

Attachments

  • Capture+_2018-02-12-17-31-00-1.png
    Capture+_2018-02-12-17-31-00-1.png
    5.1 KB · Views: 128
karush said:
$\textsf{Find the center of mass of a thin plate of density}$
$\textsf{ $\delta=3$ bounded by the lines $\color{red}{x=0}$, $ y=x$, and the parabola
$y=2-x^2$ in the $Q1$}$

$\color{red}{x=0}$ is the y-axis as shown in Mark’s sketch, not the x-axis as shown in your sketch.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top