Where is the Gaussian curvature zero, maximum, and minimum on a torus?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The Gaussian curvature of a torus can be analyzed by examining its geometric properties. On a standard torus, the Gaussian curvature is zero along the central circle where the torus is flat. The maximum curvature occurs at the points where the torus is most "round," typically at the top and bottom of the tube, while the minimum curvature is found along the inner edges of the torus. Understanding these points helps in visualizing the surface's shape and its curvature characteristics. The discussion highlights the need for further exploration of these curvature properties on the specified torus.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Let $T$ be the torus generated by taking the circle of radius 1 in the $xz$-plane centered at (0,0,2) and revolving it about the $x$-axis. Find the points (or curves) on $T$ where the Gaussian curvature $K$ is zero, at a maximum, and at a minimum.

-----

 
Physics news on Phys.org
No one answered this week's question. You can find my solution below:

The torus $T$ has the parameterization $f: (s,t)\mapsto(\cos t,(2+\sin t)\cos s,(2+\sin t)\sin s)$, where $t$ is the parameter used to define the circle in the $xz$ plane and $s$ is the parameter used to define the circle of revolution in the $yz$ plane. We now compute the first fundamental form $I$ and the second fundamental form $II$; but first, we need to know the derivatives of our parameterized function. We see that
\[\begin{aligned}\frac{\partial f}{\partial s} &= (0,-(2+\sin t)\sin s,(2+\sin t)\cos s)\\\frac{\partial f}{\partial t} &= (-\sin t,\cos t\cos s, \cos t\sin s)\ \\ \frac{\partial^2f}{\partial s^2} &= (0,-(2+\sin t)\cos s,-(2+\sin t)\sin s)\\ \frac{\partial^2f}{\partial t^2} &= (-\cos t,-\sin t\cos s,-\sin t\sin s)\\ \frac{\partial^2f}{\partial t\partial s} &= (0,-\cos t\sin s,\cos t\cos s)\end{aligned}\]
To compute $II$, we also need to compute the normal vector $\eta$:
\[\eta = \frac{\dfrac{\partial f}{\partial s}\times\dfrac{\partial f}{\partial t}}{\left\|\dfrac{\partial f}{\partial s}\times\dfrac{\partial f}{\partial t}\right\|}=(-\cos t,-\sin t\cos s,-\sin t\sin s).\]
With this, we now see that
\[I= \begin{bmatrix} \left\langle\frac{\partial f}{\partial s},\frac{\partial f}{\partial s} \right\rangle& \left\langle\frac{\partial f}{\partial s},\frac{\partial f}{\partial t}\right\rangle \\ \left\langle\frac{\partial f}{\partial t},\frac{\partial f}{\partial s}\right\rangle & \left\langle\frac{\partial f}{\partial t},\frac{\partial f}{\partial t}\right\rangle \end{bmatrix} = \begin{bmatrix}(2+\sin t)^2 & 0 \\ 0 & 1\end{bmatrix}\]
and
\[II= \begin{bmatrix} \left\langle\frac{\partial^2 f}{\partial s^2},\eta \right\rangle& \left\langle\frac{\partial^2f}{\partial t\partial s},\eta\right\rangle \\ \left\langle\frac{\partial f^2}{\partial s\partial t},\eta\right\rangle & \left\langle\frac{\partial^2 f}{\partial^2 t},\eta\right\rangle \end{bmatrix} = \begin{bmatrix}(2+\sin t)\sin t & 0 \\ 0 & 1\end{bmatrix}\]
where $\langle\cdot,\cdot\rangle$ is the Euclidean inner product in $\mathbb{R}^3$. Now that we know $I$ and $II$, we can now compute the Gaussian curvature $K$:
\[\begin{aligned}K &= \frac{\det II}{\det I}\\ &= \frac{(2+\sin t)\sin t}{(2+\sin t)^2}\\ &= \frac{\sin t}{2+\sin t}\end{aligned}.\]

We now observe that if $t\in[0,2\pi)$, $K=0$ whenever $t=0$ or $t=\pi$.

Note that $K$ is independent of the parameter $s$! This implies that $K=0$ on the two circles $(\pm 1, 2\cos s,2\sin s)$ (i.e. on the circle $y^2+z^2=4$ in the $x=-1$ and $x=1$ planes).

Finally, we note that if $K(t)=\dfrac{\sin t}{2+\sin t}$, then $\dot{K}(t) = \dfrac{2\cos t}{(2+\sin t)^2}$ and $\ddot{K}(t) = \dfrac{-2(2+\sin t)^2\sin t- 4\cos^2t(2+\sin t)}{(2+\sin t)^4}$. Now, for $t\in[0,2\pi)$, $\dot{K}(t)=0$ when $t=\frac{\pi}{2}$ or $t=\frac{3\pi}{2}$; we now see that $\ddot{K}\left(\frac{\pi}{2}\right)=-\frac{2}{9}<0\implies K$ is maximized at this value and $\ddot{K}\left(\frac{3\pi}{2}\right)=2>0\implies K$ is minimized at this value. Therefore, the maximum Gaussian curvature is $K\left(\frac{\pi}{2}\right) = \frac{1}{3}$ and the miniminum Gaussian curvature is $K\left(\frac{3\pi}{2}\right)=-1$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K