MHB Which statement about eigenvalues and eigenvectors is not true?

Click For Summary
The discussion centers on identifying the false statement regarding eigenvalues and eigenvectors. The participants analyze four statements, concluding that statement b, which claims that a diagonalizable matrix is non-invertible, is incorrect. They clarify that the identity matrix is both diagonalizable and invertible, disproving statement b. The conversation also touches on the possibility of square matrices lacking real eigenvalues and the implications of a characteristic polynomial having no real roots. Ultimately, the consensus is that statement b is the one that is not true.
Yankel
Messages
390
Reaction score
0
One more question please...

which one of these statements is NOT true (only one can be false):

a. a square matrix nXn with n different eigenvalues can become diagonal.

b. A matrix that can be diagonal is irreversible.

c. Eigenvectors that correspond to different eigenvalues are linearly independent.

d. There are square matrices with no real eigenvalue.

I think that b is correct...

thanks
 
Physics news on Phys.org
Yankel said:
One more question please...

which one of these statements is NOT true (only one can be false):

a. a square matrix nXn with n different eigenvalues can become diagonal.

b. A matrix that can be diagonal is irreversible.

c. Eigenvectors that correspond to different eigenvalues are linearly independent.

d. There are square matrices with no real eigenvalue.

I think that b is correct...

thanks

What does "irreversible" mean in this context? Do you mean invertible?
 
yes, sorry, I mean not invertible, meaning, has no inverse.
 
consider this: the matrix I is diagonal, yet it is invertible, so...
 
I have eliminated most answers out, so I am left with 2...

the first is the invertible thing, and the second is that there are no squared matrices with no real eignvalue.

According to definition: D=P^-1 * A * P

So does A need to be invertible ? Why ?

Is it possible that a characteristic polynomial will have no real roots for a squared matrix ? I think so...
 
Yankel said:
I have eliminated most answers out, so I am left with 2...

the first is the invertible thing, and the second is that there are no squared matrices with no real eignvalue.

According to definition: D=P^-1 * A * P

So does A need to be invertible ? Why ?

Is it possible that a characteristic polynomial will have no real roots for a squared matrix ? I think so...

How about
$$\begin{bmatrix}0 &-1\\ 1 &0\end{bmatrix}?$$
 
Ackbach said:
How about
$$\begin{bmatrix}0 &-1\\ 1 &0\end{bmatrix}?$$
And just to be clear about the second option, you mean to write that

b. A matrix that can be diagonalized is non-invertible (or singular).

Is that the correct b. option?
 
I don't know which one is correct, but I am quite convinced now it's b, your example with the 2X2 matrix was good, I think it's done, thanks !
 
Yankel said:
I don't know which one is correct, but I am quite convinced now it's b, your example with the 2X2 matrix was good, I think it's done, thanks !

You're welcome!
 
  • #10
Yankel said:
I don't know which one is correct, but I am quite convinced now it's b, your example with the 2X2 matrix was good, I think it's done, thanks !

as i pointed out before, I is a diagonal matrix (thus it is "diagonalizable" you don't even have to do anything!) that is invertible (I is its own inverse), so b. must be false.
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
10K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K