A Why are Euler's angles picked exactly that way?

  • A
  • Thread starter Thread starter illidan4426
  • Start date Start date
  • Tags Tags
    Angles
AI Thread Summary
Euler's angles are defined by a specific sequence of rotations around the axes: first around the z-axis, then the x-axis, and finally the z-axis again. This particular order is crucial because it leads to a unique representation of orientation in three-dimensional space. Alternative sequences, such as rotating around the x-axis first, would result in different transformation equations and potentially ambiguous orientations. The choice of convention in parametrizing rotations is essential for consistency in applications like robotics and aerospace. Understanding these conventions is key to accurately describing motion and orientation in 3D systems.
illidan4426
Messages
1
Reaction score
0
TL;DR Summary
I'm wondering why exactly those angles are picked to describe the orientation of the rotating body.
So the Euler's angles are described like this:
xyz-x'y'z' (first rotation around z axis)
x'y'z'-x''y''z'' (second rotation around x')
x''y''z''-XYZ (third rotation around z'')
So I've been thought it goes like this, now I'm wondering why? Why exactly these angles and why this order? Why can't it go like this for example:
xyz-x'y'z' (rotate around x)
x'y'z'-x''y''z'' (rotate around y')
x''y''z''-XYZ (rotate around z'')
Can the motion be described this way? The equations of transformation of xyz-XYZ would be different for sure.
 
Last edited:
Physics news on Phys.org
There are all kinds of conventions around to parametrize the rotations. The Euler angles are just the most often used ones.
 
  • Like
Likes Vanadium 50 and topsquark
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top