Why Are My Geodesic Calculations Dependent on an Unknown Function?

  • Thread starter Thread starter Gleeson
  • Start date Start date
  • Tags Tags
    General relativity
Gleeson
Messages
30
Reaction score
4
Homework Statement
(a) Let ##x^a(\lambda)## describe a timelike geodesic parametrised by a non-affine parameter ##\lambda##, and let ##t^a = \frac{dx^a}{d \lambda}## be the geodesic's tangent vector. Calculate how ##\epsilon := -t_at^a## changes as a function of ##\lambda##.

(b) Let ##\xi^a## be a killing vector. Calculate how ##p := \xi_at^a## changes as a function of lambda on that same geodesic.


(c) Let ##v^a## be such that in a spacetime with metric ##g_{ab}##, ##Lie_vg_{ab} = 2cg_{ab}##, where c is a constant. (Such a vector is called homothetic.) Let ##x^a(\tau)## describe a timelike geodesic parametrised by proper time ##\tau##, and let ##u^a = \frac{d x^a}{d \tau}## be the four-velocity. Calculate how ##q = v_a u^a## changes with ##\tau##.
Relevant Equations
As above
For (a) and (b), since the geodesic is not affinely parametrised, we have that ##t^a\nabla_a t^b = f(\lambda) t^b##, for some function f.

As a results, for (a) I get that ##t^a \nabla_a \epsilon = 2 f(\lambda) \epsilon##. And for (b) I get that ##t^a \nabla_a p = f(\lambda) p##. (I can write out why I got those answers if needed.)

My suspicion is that I am doing something wrong, since I think it is strange to need to give the answer in terms of some unknown function that I introduced.

I'd appreciate some assistance please.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top