Why are quarks fundamental particles?

Click For Summary
SUMMARY

Quarks are classified as fundamental particles within the Standard Model of particle physics, meaning they cannot be divided into smaller components. The transmutation of an up quark to a down quark via the emission of a W+ boson does not imply substructure; rather, it illustrates the interactions between fundamental particles. A fundamental particle is defined by its internal quantum numbers, position, momentum, and spin, while bound states possess additional degrees of freedom that are continuous.

PREREQUISITES
  • Understanding of the Standard Model of particle physics
  • Familiarity with quantum numbers and their significance
  • Knowledge of particle interactions, specifically W boson decay
  • Basic concepts of fundamental versus bound state particles
NEXT STEPS
  • Research the properties and roles of fundamental particles in the Standard Model
  • Explore the concept of quantum numbers in detail
  • Study the mechanisms of particle transmutation and decay processes
  • Investigate the differences between fundamental particles and bound states
USEFUL FOR

Physicists, students of particle physics, and anyone interested in the foundational concepts of matter and particle interactions.

heartcomeback
Messages
3
Reaction score
0
Are quarks really considered fundamental particles that cannot be divided further? If an up quark can transmute to a down quark and release a W+ boson which decays to a positron and a neutrino (for example) - doesn't this mean that there is substructure to a quark?

What exactly is it that makes a particle fundamental and non divisible?
 
Physics news on Phys.org
heartcomeback said:
Are quarks really considered fundamental particles that cannot be divided further?
In Standard Model, yes.

If an up quark can transmute to a down quark and release a W+ boson which decays to a positron and a neutrino (for example) - doesn't this mean that there is substructure to a quark?
No, it does not prove that.

What exactly is it that makes a particle fundamental and non divisible?
A particle is either fundamental or it is a bound state. Bound states have more degrees of freedom. A fundamental particle is completely described by its internal quantum numbers, position, momentum and spin. The internal quantum numbers must be discrete.
In case of a bound state we have additional degrees of freedom related to the position and orientation of the constituents. These degrees of freedom are always continuous.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K