MHB Why Are There No Real Solutions to the Equation \( |x^2 + 4x| = -12 \)?

Click For Summary
The equation \( |x^2 + 4x| = -12 \) has no real solutions because the absolute value of any expression is always non-negative, meaning \( |x^2 + 4x| \ge 0 \). Since -12 is negative, it is impossible for the left side of the equation to equal -12. Algebraically, both cases for \( x^2 + 4x \) lead to contradictions when checking for real solutions. The discriminant analysis for both cases confirms that there are no valid solutions. Therefore, the equation has no real numbers that satisfy it.
mathdad
Messages
1,280
Reaction score
0
Explain why there are no real numbers that satisfy the equation
$$|x^2 + 4x| = - 12$$
How is this done algebraically?
 
Last edited by a moderator:
Mathematics news on Phys.org
RTCNTC said:
Explain why there are no real numbers that satisfy the equation

|x^2 + 4x| = - 12

because ...

$|\text{whatever}| \ge 0$

How is this done algebraically?

solve each case ...

case 1 ... $x^2+4x \ge 0 \implies x^2+4x+12 = 0$ ... recommend looking at the discriminant

case 2 ... $x^2+4x < 0 \implies -x^2-4x+12 = 0$ ... check the two real solutions in the original abs equation.
 

Attachments

  • MathMagic171109_1.png
    MathMagic171109_1.png
    10.2 KB · Views: 141
Last edited by a moderator:
$|whatever| \ge 0 \implies |whatever| \nless 0$

... that's it.
 
Great. We now move on to the next topic.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K