I Why did I lose 60% on my proof of Generalized Vandermonde's Identity?

AI Thread Summary
The discussion revolves around a graded proof of Generalized Vandermonde's Identity, which received a low score due to a lack of detail. The proof correctly identifies the summation of nonnegative integers but fails to clearly articulate the reasoning behind the double counting method required for the proof. The grader noted that the proof did not adequately explain how all possible selections of m elements are accounted for in the summation. Additionally, the proof implicitly suggested an equivalence between the left-hand side and right-hand side without fully justifying it. To improve, the proof should explicitly outline the double counting argument and clarify the relationship between the summation and the identity.
12john
Messages
12
Reaction score
1
My tests are submitted and marked anonymously. I got a 2/5 on the following, but the grader wrote no feedback besides that more detail was required. What details could I have added? How could I perfect my proof?
Prove Generalized Vandermonde's Identity, solely using a story proof or double counting. DON'T prove using algebra or induction — if you do, you earn zero marks.

$$\sum\limits_{k_1+\cdots +k_p = m} {n_1\choose k_1} {n_2\choose k_2} \cdots {n_p\choose k_p} = { n_1+\dots +n_p \choose m }.$$


Beneath is my proof graded 2/5.
I start by clarifying that the summation ranges over all lists of NONnegative integers ##(k_1,k_2,\dots,k_p)## for which ##k_1 + \dots + k_p = m##. These ##k_i## integers are NONnegative, because this summation's addend or argument contains ##\binom{n_i}{k_i}##.

On the LHS, you choose ##k_1## elements out of a first set of ##n_1## elements; then ##k_2## out of another set of ##n_2## elements, and so on, through ##p## such sets — until you've chosen a total of ##m## elements from the ##p## sets.

Thus, on the LHS, you are choosing ##m## elements out of ##n_1+\dots +n_p##, which is exactly the RHS. Q.E.D.
 
Last edited:
Mathematics news on Phys.org
Can't read the mind of the person who graded it, but you could have made clearer why (or at least mention that) the sum catches every possible way to select m elements. You only documented that every "element" of the LHS is part of the RHS, i.e. LHS <= RHS.
 
I miss a comment on the summation. And the product is only implicitly explained. Where is the double counting? I would have expected an argument ##\sum \ldots = ?## but you have looked at the RHS and reasoned from there instead of the other way around.
 
To put what the others said in another way, the way I read your proof, you seem to be saying
$$\binom{n_1}{k_1}\binom{n_2}{k_2} \cdots \binom{n_p}{k_p} = \binom{n_1+\cdots+n_p}{m}$$ as long as ##m=k_1+\cdots+k_p##.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top