Why do we conclude that r1-r2=0?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the proof of the statement "a ≡ b (mod m) implies a and b give the same remainder when divided by m." The proof demonstrates that if m divides a - b, then the remainders r1 and r2 must be equal, leading to the conclusion that r1 - r2 = 0. The participants clarify that the inequality -m < r1 - r2 < m arises from the definitions of r1 and r2 being within the bounds of 0 and m. The discussion emphasizes the tautological nature of the statement, as it closely aligns with the definition of modular arithmetic.

PREREQUISITES
  • Understanding of modular arithmetic and congruences
  • Familiarity with the notation a ≡ b (mod m)
  • Basic knowledge of integer division and remainders
  • Ability to manipulate inequalities
NEXT STEPS
  • Study the properties of modular arithmetic in detail
  • Learn about the Euclidean algorithm for finding greatest common divisors
  • Explore applications of modular arithmetic in cryptography
  • Investigate the concept of equivalence relations in mathematics
USEFUL FOR

Students of mathematics, particularly those studying number theory or abstract algebra, as well as educators seeking to clarify concepts of modular arithmetic.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)

I am looking at the proof of the following sentence:
$a \equiv b \pmod m \Rightarrow a,b$ give the same remainder when they are divided by $m$.

That's the proof that my teacher gave:

Let $a \equiv b \pmod m$.So, $ m \mid a-b$

Let $a=q_1 \cdot m+r_1, 0 \leq r_1 < m$
and $b=q_2 \cdot m+r_2,0 \leq r_2<m$

then $a-b=(q_1-q_2) \cdot m+ (r_1-r_2)$

As $m \mid a-b \Rightarrow m \mid r_1-r_2$

As $-m<r_1-r_2<m \Rightarrow r_1-r_2=0$ $\Rightarrow r_1=r_2$.

Could you explain me the red part? :confused:
 
Physics news on Phys.org
evinda said:
Hello! :)

I am looking at the proof of the following sentence:
$a \equiv b \pmod m \Rightarrow a,b$ give the same remainder when they are divided by $m$.

That's the proof that my teacher gave:

Let $a \equiv b \pmod m$.So, $ m \mid a-b$

Let $a=q_1 \cdot m+r_1, 0 \leq r_1 < m$
and $b=q_2 \cdot m+r_2,0 \leq r_2<m$

then $a-b=(q_1-q_2) \cdot m+ (r_1-r_2)$

As $m \mid a-b \Rightarrow m \mid r_1-r_2$

As $-m<r_1-r_2<m \Rightarrow r_1-r_2=0$ $\Rightarrow r_1=r_2$.

Could you explain me the red part? :confused:

$m|r_{1}-r_{2}$ so $ma=r_{1}-r_{2}$ for some integer $a$. If $a$ is non-zero, then $|r_{1}-r_{2}|$ would be at least as large as $|m|$, contrary to the inequality $-m<r_{1}-r_{2}<m$. Hence $a=0$, so that $r_{1}-r_{2}=0$
 
Fermat said:
$m|r_{1}-r_{2}$ so $ma=r_{1}-r_{2}$ for some integer $a$. If $a$ is non-zero, then $|r_{1}-r_{2}|$ would be at least as large as $|m|$, contrary to the inequality $-m<r_{1}-r_{2}<m$. Hence $a=0$, so that $r_{1}-r_{2}=0$

How do we conclude to the inequality $-m<r_{1}-r_{2}<m$? :confused:
 
evinda said:
How do we conclude to the inequality $-m<r_{1}-r_{2}<m$? :confused:

It follows from the inequalities $0 \leq r_1 < m$ and $0 \leq r_2<m$.
 
Fermat said:
It follows from the inequalities $0 \leq r_1 < m$ and $0 \leq r_2<m$.

I understand...Thank you! (Nod)
 
evinda said:
Hello! :)

I am looking at the proof of the following sentence:
$a \equiv b\pmod m \Rightarrow a,b$ give the same remainder when they are divided by $m$.
I would rewrite this, replacing words by symbols, to get:
$a \equiv b\pmod m \Rightarrow a\pmod m = r, b\pmod m = r$

then as your teacher stated, by definition
$a \equiv b\pmod m \Rightarrow m \mid a-b$

so, by substitution, we have as an equivalent to the instructor's problem statement:
$m \mid a-b \Rightarrow a\pmod m = r, b\pmod m = r$

also by definition we have:
$a\pmod m = r \Rightarrow a=mq_1+r$
and
$b\pmod m = r \Rightarrow b=mq_2+r$

so again by substituting into the problem definition we have:
$m \mid a-b \Rightarrow a=mq_1+r$ and $b=mq_2+r$
then
$m \mid a-b \Rightarrow (a-b) = m(q_1 - q_2)$
and finally:
$m \mid a-b \Rightarrow m \mid a-b$

Really, the actual statement to be proven was so close to being a fundamental definition that the professor had to work hard to obscure that fact.
 
Last edited:
I would personally put the "mod m" part into parentheses only when explicitly working with a congruence relation, and just writing "a mod m" when using it to denote a remainder operation. I find it's more consistent and less confusing to people, but it's no big deal.

And, yes, the argument here is near tautological. $a \equiv b \pmod{m}$ is pretty much the definition of "$a$ and $b$ leave the same remainder when divided by $m$", though I suppose it depends on what fundamental definition of modular arithmetic you're working your way up from.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
21
Views
4K