Why Does Checking if 2 Divides z1 Matter in Rational Solutions for X^2+Y^2=n?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the conditions under which the equation \(X^2 + Y^2 = n\) has rational solutions, particularly focusing on the implications of checking whether \(2\) divides \(z_1\) in the context of \(n \equiv 3 \pmod{4}\). Participants explore modular arithmetic techniques in number theory to analyze the existence of solutions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant notes that if \(z_1\) is even, then \(z_1^2 \equiv 0 \pmod{4}\) leads to \(x_1^2 + y_1^2 \equiv 0 \pmod{4}\), resulting in a contradiction.
  • Another participant states that if \(z_1\) is odd, then \(z_1^2 \equiv 1 \pmod{4}\) leads to \(x_1^2 + y_1^2 \equiv 3 \pmod{4}\), which also results in a contradiction.
  • There is a discussion about the method of checking cases modulo different numbers to eliminate possibilities, with one participant questioning how to determine which modulo to use in various exercises.
  • A later reply suggests that the choice of modulo depends on the specific problem, providing an example where checking modulo \(3\) helps eliminate \(Z\) from the argument.

Areas of Agreement / Disagreement

Participants generally agree on the utility of checking cases modulo different numbers, but there is no consensus on how to choose the appropriate modulo for different problems, indicating an area of ongoing exploration and debate.

Contextual Notes

Participants express uncertainty about the criteria for selecting moduli in different contexts, highlighting that the approach may vary based on the specific equation being analyzed.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I am looking at the following exercise:

In general, the equation $X^2+Y^2=n$, when $n \equiv 3 \pmod 4$, has no rational solution.

According to my notes:

Let $x=\frac{a}{b}, y=\frac{c}{d}, a,b,c,d \in \mathbb{Z}, b \cdot d \neq 0, (a,b)=1, (c,d)=1$, solution of $X^2+Y^2=n$.

$$\frac{a^2}{b^2}+\frac{c^2}{d^2}=n \Rightarrow (ad)^2+(bc)^2=n(bd)^2$$

That means, that the equation $X^2+Y^2=n Z^2$ has an integer solution $(x_1, y_1, z_1)=(ad, bc, bd)$.

Without loss of generality, we suppose that $gcd(x_1,y_1,z_1)=1$.

If $2 \mid z_1 \Rightarrow x_1^2+y_1^2 \equiv 0 \pmod 4 \Rightarrow (2 \mid x_1 \wedge 2 \mid y_1) \Rightarrow 2 \mid (x_1,y_1,z_1)=1, \text{ Contradiction}$

Therefore, $z_1=2k+1, z_1^2 \equiv 1 \pmod 4$

$$\Rightarrow n z_1^2 \equiv n \cdot 1 \pmod 4 \equiv 3 \pmod 4$$

$$\Rightarrow x_1^2+y_1^2 \equiv 3 \pmod 4, \text{ Contradiction.}$$

Why do we check if $2 \mid z_1$ ? (Sweating)
 
Mathematics news on Phys.org
$z_1$ can either be odd or even. If even, $z_1 = 0 \pmod{2}$ and hence $z_1^2 = 0 \pmod{4}$ and $x_1^2 + y_1^2 = 0 \pmod{4}$ leading to a contradiction as above.

If $z_1$ is odd, i.e., $z_1 = 1 \pmod{2}$ then $z_1^2 = 1 \pmod{4}$ in which case $x_1^2 + y_1^2 = 3 \pmod{4}$ which also leads to a contradiction.

It's a standard method in number theory to check case-by-case modulo something and eliminate the possibilities. That's what they have done above.
 
mathbalarka said:
$z_1$ can either be odd or even. If even, $z_1 = 0 \pmod{2}$ and hence $z_1^2 = 0 \pmod{4}$ and $x_1^2 + y_1^2 = 0 \pmod{4}$ leading to a contradiction as above.

If $z_1$ is odd, i.e., $z_1 = 1 \pmod{2}$ then $z_1^2 = 1 \pmod{4}$ in which case $x_1^2 + y_1^2 = 3 \pmod{4}$ which also leads to a contradiction.

It's a standard method in number theory to check case-by-case modulo something and eliminate the possibilities. That's what they have done above.

Ok.. but how can I know which modulo I should take?

For example, at this exercise: Show that $x^2+y^2=3$ has no rational solution, why do we check if $3 \mid x_1$ and not if $2 \mid x_1$ ? (Thinking)
 
That completely depends on the problem you're doing. It's more or less a "trick" of number theory of some sort.

In the example $X^2 + Y^2 = 3Z^2$ (where $\text{gcd}(X, Y, Z) = 1$), considering modulo $3$ provides an obvious way to "chuck out" $Z$ from the modulo argument, giving $X^2 + Y^2 = 0 \pmod{3}$. However, this is possible if and only if $X^2 = Y^2 = 0 \pmod{3}$ (why?) in which case $X = Y = 0 \pmod{3}$. But then $X^2 + Y^2 = 0\pmod{9}$, thus $3 | Z^2 \Rightarrow 3|Z$. But then $\text{gcd}(X, Y, Z)=3 \neq 1$, contrary to our assumption.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K