Why Does Flipping the Denominator in Complex Fractions Give the Wrong Answer?

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Complex Fraction
Click For Summary
SUMMARY

The discussion centers on the incorrect application of flipping the denominator in complex fractions, specifically the fraction ##\frac{2}{\frac{5}{3}}##. Participants clarify that division by a fraction is equivalent to multiplying by its reciprocal, leading to the correct simplification of ##\frac{2}{\frac{5}{3}} = 2 \cdot \frac{3}{5} = \frac{6}{5}##. The term "flipping up" is criticized for its lack of mathematical precision. The conversation emphasizes understanding division as multiplication by the multiplicative inverse rather than merely flipping fractions.

PREREQUISITES
  • Understanding of basic fraction operations
  • Familiarity with the concept of multiplicative inverses
  • Knowledge of simplifying complex fractions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of multiplicative inverses in algebra
  • Learn about simplifying complex fractions in greater detail
  • Explore the concept of division as multiplication by the inverse
  • Practice problems involving complex fractions and their simplifications
USEFUL FOR

Students learning algebra, educators teaching fraction simplification, and anyone seeking to improve their understanding of complex fractions and division operations.

member 731016
Homework Statement
I am trying to simplify ##\frac {2}{\frac{5}{3}}##.
Relevant Equations
Please see below
My first method to simplify the fraction is to to I flip ##\frac{5}{3}## up I get ##2 \times \frac{3}{5} = \frac{6}{5}##

Method 2: if I flip 3 up I get ##\frac{2}{5} \times \frac{1}{3} = \frac{2}{15}##.

Method 3: I could use it multiply ##\frac{3}{3}## since this is the same as mutlipying by ##1##. ##\frac{2}{\frac{5}{3}} \times \frac{3}{3}## so the ##3## cancels giving ##\frac{6}{5}##

I know the method in bold gives the wrong answer. However, why dose it not work?

Many thanks!
 
Physics news on Phys.org
if I flip 3 up I get ##\frac{2}{5} \times \frac{1}{3} = \frac{2}{15}##

The wording is horrifying: "Flipping up" ?:)

You multiply numerator and denominator by 3 to get ##\frac{2}{5} \times {3} = \frac{6}{5}##

##\ ##
 
  • Like
Likes Grelbr42 and member 731016
BvU said:
if I flip 3 up I get ##\frac{2}{5} \times \frac{1}{3} = \frac{2}{15}##

The wording is horrifying: "Flipping up" ?:)

You multiply numerator and denominator by 3 to get ##\frac{2}{5} \times {3} = \frac{6}{5}##

##\ ##
Thank you for your help @BvU!

I agree about the wording.

Many thanks!
 
There's this method I knew as the " Double C"
Sorry, will edit when I get on my pc.
##\frac {2}{\frac {5}{3}}##=##\frac {\frac {2}{1}}{\frac {5}{3}}##
Now do a" double C"

Top 2 with bottom 3, bottom 1 with top 5= ##\frac {2.3}{1.5}=\frac{6}{5}##
 
Last edited by a moderator:
  • Like
Likes member 731016
I like to think of reducing fractions as just multiplying by 1, with a judicious choice of how that's represented to cancel or move the parts I want. Like this:
$$ \frac{2}{\frac{5}{3}} = \frac{2}{\frac{5}{3}} ⋅ 1 = \frac{2}{\frac{5}{3}} ⋅ \frac{3}{3} = \frac{2⋅3}{\frac{5}{3}⋅3} = \frac{6}{5} $$
It's pretty simple in this context, but it's also really useful later in your studies with complex numbers, polynomial fractions, unit conversions, etc.
 
  • Like
Likes member 731016
WWGD said:
There's this method I knew as the " Double C"
Sorry, will edit when I get on my pc.
##\frac {2}{\frac {5}{3}}##=##\frac {\frac {2}{1}}{\frac {5}{3}}##
Now do a" double C"

Top 2 with bottom 3, bottom 1 with top 5= ##\frac {2.3}{1.5}=\frac{6}{5}##
Thank you for your reply @WWGD !

No need to edit it!

Many thanks!
 
Last edited by a moderator:
DaveE said:
I like to think of reducing fractions as just multiplying by 1, with a judicious choice of how that's represented to cancel or move the parts I want. Like this:
$$ \frac{2}{\frac{5}{3}} = \frac{2}{\frac{5}{3}} ⋅ 1 = \frac{2}{\frac{5}{3}} ⋅ \frac{3}{3} = \frac{2⋅3}{\frac{5}{3}⋅3} = \frac{6}{5} $$
It's pretty simple in this context, but it's also really useful later in your studies with complex numbers, polynomial fractions, unit conversions, etc.
Thank you for your reply @DaveE!

That is a good way to think of it!

Many thanks!
 
Callumnc1 said:
Homework Statement:: I am trying to simplify ##\frac {2}{\frac{5}{3}}##.
Relevant Equations:: Please see below

My first method to simplify the fraction is to to I flip ##\frac{5}{3}## up I get ##2 \times \frac{3}{5} = \frac{6}{5}##
Division by a fraction is equivalent to multiplying by the reciprocal of that fraction. So ##\frac a {\frac b c} = a \cdot \frac c b##.

"Flipping" is something that one does to a hamburger patty. It is not a recognized mathematical operation.
BvU said:
The wording is horrifying: "Flipping up" ?:)
Amen!
 
  • Like
Likes fresh_42, SammyS and member 731016
I like to think about the division that it does not exist! What we call division is basically a multiplication with inverse elements: ##\dfrac{x}{y}=x\cdot y^{-1}## where ##y^{-1}## is the unique element with ##y\cdot y^{-1}=1.##

What we do have is ##\dfrac{2}{\frac{5}{3}}=2\cdot \left(5\cdot 3^{-1}\right)^{-1}.## Inverse elements are defined. They are the solution to ##a \cdot x =1.## This means we really have
\begin{align*}
\dfrac{2}{\frac{5}{3}}&=2\cdot \left(5\cdot 3^{-1}\right)^{-1}=2\cdot \left(3^{-1}\right)^{-1} \cdot 5^{-1}=2\cdot 3 \cdot 5^{-1}=6\cdot 5^{-1}
\end{align*}
and in common phrasing ##=\dfrac{6}{5}.##

You do not have to follow this way of thinking about it, but it is the mathematical background. Multiplying with the inverted or flipped or whatever quotient is only the crutch. It is actually the multiplication with the multiplicative inverse element.
 
  • Like
Likes DaveE and member 731016
  • #10
fresh_42 said:
I like to think about the division that it does not exist! What we call division is basically a multiplication with inverse elements: ##\dfrac{x}{y}=x\cdot y^{-1}## where ##y^{-1}## is the unique element with ##y\cdot y^{-1}=1.##

What we do have is ##\dfrac{2}{\frac{5}{3}}=2\cdot \left(5\cdot 3^{-1}\right)^{-1}.## Inverse elements are defined. They are the solution to ##a \cdot x =1.## This means we really have
\begin{align*}
\dfrac{2}{\frac{5}{3}}&=2\cdot \left(5\cdot 3^{-1}\right)^{-1}=2\cdot \left(3^{-1}\right)^{-1} \cdot 5^{-1}=2\cdot 3 \cdot 5^{-1}=6\cdot 5^{-1}
\end{align*}
and in common phrasing ##=\dfrac{6}{5}.##

You do not have to follow this way of thinking about it, but it is the mathematical background. Multiplying with the inverted or flipped or whatever quotient is only the crutch. It is actually the multiplication with the multiplicative inverse element.
Thanks for sharing @fresh_42 ! That is so cool!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
677
  • · Replies 11 ·
Replies
11
Views
2K
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
2K