MHB Why Does $$\lim_{n\rightarrow \infty }\frac{n^{2016}\cdot 2^{n-1}}{3^{n}}=0$$?

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit Reason
Vali
Messages
48
Reaction score
0
Why $$\lim_{n\rightarrow \infty }\frac{n^{2016}\cdot 2^{n-1}}{3^{n}}=0$$ ?
Because $3^{n}> 2^{n-1} $ ?
 
Physics news on Phys.org
Not that alone. \frac{2^{n-1}}{3^n}= \frac{1}{2}\left(\frac{2}{3}\right)^n as well as the fact that a^n "dominates" n^b as n goes to infinity. That is, for any a and b, larger than 1, the limit of \frac{n^b}{a^n}, as n goes to infinity, is 0.
 
Thank you for the response!
Yes, I know that log<power<exponential<factorial but it's not completely clear for me in this case.I have exponential function at denominator and numerator too.That $2^{n-1}$ is exponential but $3^{n}$ is also an exponential function but is higher than the first one.I'm a little bit confused..
 
That's why we simplify it as:
$$\lim_{n\rightarrow \infty }\frac{n^{2016}\cdot 2^{n-1}}{3^{n}}
=\lim_{n\rightarrow \infty }n^{2016}\cdot \frac{ 2^{n-1}}{3^{n}}
=\lim_{n\rightarrow \infty }n^{2016}\cdot \frac 2 2 \cdot \frac{ 2^{n-1}}{3^{n}}
=\lim_{n\rightarrow \infty }n^{2016}\cdot \frac 1 2 \cdot \frac{ 2^{n}}{3^{n}}
=\lim_{n\rightarrow \infty }\frac 1 2 \cdot n^{2016}\cdot \left(\frac{ 2}{3}\right)^n
$$
Now we can use that domination order as Country Boy explained, can't we?
 
I understood the simplification but I don't understand the form.I mean, I know that $\frac{n^b}{a^n}$ tends to 0 but in my form I have $n^{b}*a^{n}$.
In $\frac{n^b}{a^n}$ which is $n^{b}$ and which is $a^{n}$ ?
 
Vali said:
I understood the simplification but I don't understand the form.I mean, I know that $\frac{n^b}{a^n}$ tends to 0 but in my form I have $n^{b}*a^{n}$.
In $\frac{n^b}{a^n}$ which is $n^{b}$ and which is $a^{n}$ ?

We can rewrite what we have as:
$$\lim_{n\rightarrow \infty }\frac 1 2 \cdot n^{2016}\cdot \frac{2^n}{3^n}
= \lim_{n\rightarrow \infty }\frac 1 2 \cdot n^{2016}\cdot \frac{1}{\frac{3^n}{2^n}}
= \lim_{n\rightarrow \infty }\frac 1 2 \cdot \frac{n^{2016}}{\left(\frac{3}{2}\right)^n}
$$
Can we tell now which is $n^{b}$ and which is $a^{n}$ ?
 
I finally understood!
Thanks a lot!
 

Similar threads

Replies
3
Views
3K
Replies
2
Views
2K
Replies
9
Views
2K
Replies
16
Views
4K
Replies
2
Views
1K
Replies
17
Views
5K
Replies
2
Views
1K
Back
Top