MHB Why Does tan(x + pi/2) Equal -cotx in Trigonometry?

mathdad
Messages
1,280
Reaction score
0
I decided to review a little trigonometry.

Why does tan(x + pi/2) = -cotx?

I cannot use the tangent of a sum formula because
tan(pi/2) does not exist.

How about tan(x + pi/2) = [sin(x + pi/2)]/[cos(x + pi/2)] and then apply the addition rules for sine and cosine?
 
Mathematics news on Phys.org
You could certainly do that, however, you could also write:

$$\tan\left(x+\frac{\pi}{2}\right)=\tan\left(\frac{\pi}{2}-(-x)\right)$$

Using a co-function identity, we obtain:

$$\tan\left(x+\frac{\pi}{2}\right)=\cot\left(-x\right)$$

Using the fact that the cotangent function is odd, we have:

$$\tan\left(x+\frac{\pi}{2}\right)=-\cot\left(x\right)$$ :D

You can also use the angle-sum identity for tangent, if you then use a limit and L'Hôpital's Rule for the resulting indeterminate form, however we'll keep this pre-calc. ;)
 
You know the short cut way. Cool.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top