iSplicer
- 2
- 0
Thanks, this ended up helping a lot =)
and sorry for digging up an old thread!
and sorry for digging up an old thread!
gaganspidey said:This is what I've been able to work out :
\sum_{r=0}^{n} r C^n_r x^r y^{n-r} <--------(given)
= \frac{n!}{(r-1)!(n-1-(r-1)!} x^r y^{n-r} <---------(cancelling the r's & adding & subtracting 1 & regrouping them)
= \frac{(nx)}{x} \frac{(n-1)!}{(r-1)!(n-1-(r-1)!} x^r y^{n-r} <-------(separating n & multiplying & dividing by x)
= (nx) C^{n-1}_{r-1} x^{r-1}y^{n-r} <-------( The R.H.S)
= nx(y+x)^{n-1} <--------(The L.H.S)
= nx <--------(Substuting the value x+y=1)
I think something's not right above, but what is it ?