MHB Why does the equality hold for a symmetric matrix $A$ with $A = A^{T}$?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
For a symmetric matrix \( A \) in \( \mathbb{R}^{n \times n} \), it is established that the operator norm \( ||A|| \) equals the supremum of \( ||Ax||_2 \) and the supremum of \( |\langle x, Ax \rangle| \) for unit vectors \( x \). The maximum values \( \lambda \) and \( \mu \) represent the extremal values of \( \langle x, Ax \rangle \) under the same constraints. The proof involves demonstrating that \( ||A|| \leq \sup \{ |\langle x, Ax \rangle|: ||x||_2=1\} \). The discussion also touches on the equality involving the expression \( \frac{1}{4} ( 2 \langle Ax,Ax \rangle+2 \langle A^2 x, x \rangle) \) and its derivation through expansion.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)For $A \in \mathbb{R}^{n \times n}$ with $A=A^{T}$ we set:

$$\lambda:= \max \{ \langle x, A x \rangle: ||x||_2=1\} \\ \mu:= \min \{ \langle x,A x \rangle: ||x||_2=1\}$$

Then for $x \in S_{||\cdot||_{2}}$ we have:

$$\langle x, Ax \rangle \leq |\langle x, A x \rangle| \leq ||x||_2 ||Ax||_2 \leq ||A|| ||x||_2^2=||A||$$

i.e. $\sup_{||x||_2=1} ||Ax||_2 \leq ||A||$

and since $\sup_{||x||_2=1} |\langle x, Ax \rangle|= \max \{ |\lambda|, |\mu|\}$ we have that $\max \{ |\lambda|, |\mu|\} \leq ||A||$.

  • Why does it hold that $\sup_{||x||_2=1} |\langle x, Ax \rangle|= \max \{ |\lambda|, |\mu|\}$ ?

Theorem

If $A \in \mathbb{R}^{n \times n}$ symmetric matrix then

$$||A||= \sup \{ ||Ax||_2: ||x||_2=1\}= \sup \{ |\langle x, Ax \rangle|: ||x||_2=1\}= \max \{ |\lambda|, |\mu|\}$$

Proof:

It remains to show that $||A|| \leq \sup \{ |\langle x, Ax \rangle|: ||x||_2=1\}:=a$

$$||Ax||_2^2=\frac{1}{4} (4 ||Ax||_2^2)=\frac{1}{4}(4 \langle Ax, Ax \rangle)=\frac{1}{4} ( 2 \langle Ax,Ax \rangle+2 \langle A^2 x, x \rangle) \overset{\text{ for an arbritary } \gamma>0}{=} \frac{1}{4}(\langle A(\gamma x+ \gamma^{-1} Ax), \gamma x+ \gamma^{-1} Ax \rangle- \langle A(\gamma x- \gamma^{-1}Ax), \gamma x-\gamma^{-1}Ax) \leq \frac{1}{4}(a ||\gamma x+ \gamma^{-1}Ax||^2+a ||\gamma x-\gamma^{-1}Ax||^2) \leq \frac{a}{2}(||x||_2^2 \gamma^2 + ||Ax||_2^2 \frac{1}{\gamma^2})$$

We set $f(\gamma)=||x||_2^2 \gamma^2 + ||Ax||_2^2 \frac{1}{\gamma^2})$ and check where $f$ achieves its minimum.

  • Could you explain me why the following equality holds?

$$\frac{1}{4} ( 2 \langle Ax,Ax \rangle+2 \langle A^2 x, x \rangle) \overset{\text{ for an arbritary } \gamma>0}{=} \frac{1}{4}(\langle A(\gamma x+ \gamma^{-1} Ax), \gamma x+ \gamma^{-1} Ax \rangle- \langle A(\gamma x- \gamma^{-1}Ax), \gamma x-\gamma^{-1}Ax) $$
 
Physics news on Phys.org
Did you try to expand the right hand side of the wanted equality?
 
girdav said:
Did you try to expand the right hand side of the wanted equality?

Yes, I did. I saw that the equality holds. (Nod)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K