MHB Why Does This Summation Simplify to a Power of p?

  • Thread starter Thread starter pp123123
  • Start date Start date
  • Tags Tags
    Summation
Click For Summary
The summation $\sum_{x=0}^{\infty} \binom{x+r-2}{r-2}(1-p)^{x}$ simplifies to $p^{1-r}$ through the application of the binomial series. By substituting $x = -(1-p)$ and $\alpha = 1-r$ into the binomial series formula, the series converges to the desired power of $p$. This transformation highlights the relationship between the binomial coefficients and the probability term. Understanding this simplification is crucial for grasping the underlying principles of combinatorial identities in probability theory. The discussion emphasizes the significance of the binomial series in simplifying complex summations.
pp123123
Messages
5
Reaction score
0
I came across some summation but have no idea how to simplify it.

$\sum_{x=0}^{\infty} \binom{x+r-2}{r-2}(1-p)^{x}=p^{1-r}$

Why is it so?
 
Physics news on Phys.org
pp123123 said:
I came across some summation but have no idea how to simplify it.

$\sum_{x=0}^{\infty} \binom{x+r-2}{r-2}(1-p)^{x}=p^{1-r}$

Why is it so?
Hint: Use the binomial series $$(1+x)^\alpha = \sum_{k=0}^\infty {\alpha\choose k}x^k,$$ with $x = -(1-p)$ and $\alpha = 1-r.$
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
776
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K