Why Does Yₙ Converge to Zero for q < 1/2 in a Random Walk?

Click For Summary
SUMMARY

The discussion centers on the convergence of the random variable \(Y_n = e^{S_n}\) to zero when \(q < \frac{1}{2}\) in a random walk defined by independent, identically distributed random variables \(X_j\) with \(P(X_j = 1) = q\) and \(P(X_j = -1) = 1 - q\). The law of large numbers is applied to show that \(\log Y_n\) converges almost surely to \(-\infty\), leading to \(Y_{\infty} = 0\) almost surely. Additionally, it is established that \(Y_n\) does not converge almost surely when \(q = \frac{1}{2}\) and diverges to infinity when \(q = 1\), highlighting the importance of the parameter \(q\) in determining the behavior of \(Y_n\).

PREREQUISITES
  • Understanding of random variables and probability distributions
  • Familiarity with the law of large numbers
  • Knowledge of martingales and their properties
  • Proficiency in using LaTeX for mathematical expressions
NEXT STEPS
  • Study the law of large numbers in detail
  • Explore the properties of martingales and their convergence theorems
  • Investigate the implications of different values of \(q\) on random walk behavior
  • Learn to express mathematical concepts using LaTeX for clarity in communication
USEFUL FOR

Mathematicians, statisticians, and students studying stochastic processes, particularly those interested in random walks and their convergence properties.

WMDhamnekar
MHB
Messages
378
Reaction score
30
Let ##X_1, X_2, \dots ##be independent, identically distributed random variables with

##P{X_j = 1} = q, P{X_j = −1} = 1 − q.##

Let ##S_0 = 0 ##and for n ≥ 1, ##S_n = X_1 + X_2 + \dots + X_n.## Let ##Y_n = e^{S_n}##
Let ##Y_{\infty} = \lim\limits_{n\to\infty} Y_n.## Explain why ##Y_{\infty} = 0.## (Hint: there are at least two ways to show this. One is to consider ##\log{Y_n}## and use the law of large numbers. Another is to note that with probability one ##Y_{n+1}/Y_n## does not converge.)

My answer:

We can use the law of large numbers to show that ##\log Y_n## converges almost surely to ##-\infty##, which implies that ##Y_n## converges almost surely to 0.
First, note that ##Y_n## is a non-negative random variable, so its logarithm ##\log Y_n## is well-defined. Using the definition of ##Y_n##, we have:
##\log{Y_n}= S_n =\displaystyle\sum_{j=1}^n X_j##

By the law of large numbers, we know that the sample mean $\frac{1}{n}\sum_{j=1}^{n}X_j$ converges almost surely to the expected value ##E[X_j] = q - (1-q) = 2q-1.## Therefore, we have:
##\frac{1}{n}\displaystyle\sum_{j=1}^n X_j \to (2q-1)## almost surely

Using this result, we can show that ##\log{Y_n}## converges almost surely to ##-\infty## as follows:
####\begin{align*}
\log Y_n &= \sum_{j=1}^{n} X_j \ \
&= n\cdot\frac{1}{n}\sum_{j=1}^{n} X_j \ \
&\to n(2q-1) \quad \text{almost surely} \ \
&= \infty \quad \text{if } q > \frac{1}{2} \ \
&= -\infty \quad \text{if } q < \frac{1}{2}
\end{align*}####
When ##q < \frac{1}{2}##, we have ##\log{Y_n} \to -\infty## almost surely, which implies that ##Y_{\infty} = 0## almost surely.
Alternatively, we can use the fact that ##Y_n## is a martingale to show that ##Y_n## does not converge almost surely. By definition, ##Y_n## is a martingale because ##E[Y_{n+1} \mid Y_1,\ldots,Y_n] = E[e^{S_{n+1}} \mid Y_1,\ldots,Y_n] = e^{S_n} = Y_n##. Using the martingale convergence theorem, we know that if ##Y_n## converges almost surely to a limit ##Y_{\infty}##, then ##Y_{\infty}## must be a constant because ##Y_n## is a martingale. However, we can show that ##Y_{n+1}/Y_n## does not converge almost surely, which implies that ##Y_n## does not converge almost surely.
To see why ##Y_{n+1}/Y_n## does not converge almost surely, note that:
####\begin{align*}\displaystyle\frac{Y_{n+1}}{Y_n} &= \displaystyle\frac{e^{S_{n+1}}}{e^{S_n}} \ \
&= e^{S_{n+1}-S_n} \ \
&= e^{X_{n+1}}

\end{align*}####
Since ##X_{n+1}## takes on the values 1 and -1 with positive probability, we have ##e^{X_{n+1}} = e## or ##1/e## with positive probability. Therefore, ##Y_{n+1}/Y_n## does not converge almost surely, which implies that ##Y_n ##does not converge almost surely.If q = 1/2, what would be your answer?

If ##q = 1/2##, then ##X_j## is a symmetric random variable with ##E[X_j] = 0##. In this case, ##S_n## is a random walk with mean zero, which means that ##\log{Y_n} = S_n## also has mean zero. By the law of large numbers, we know that ##\frac{1}{n}\cdot S_n## converges almost surely to zero, which implies that ##S_n## converges with probability one to zero. Using the continuous mapping theorem, we have ##\log{Y_n} \to 0## with probability one, which implies that ## Y_n \to 1##with probability one. Therefore, ##Y_n## converges to 1 with probability one when ##q = 1/2##.

Is the above answer correct?
 
Last edited:
Physics news on Phys.org
Any reason it shouldn't be ?

Where's my magnifier ?

##\ ##
 
BvU said:
Any reason it shouldn't be ?

Where's my magnifier ?

##\ ##
Please open images in new tabs and zoom them in 125% or larger than 125%. No need for magnifier.:smile:
 
WMDhamnekar said:
Please open images in new tabs and zoom them in 125% or larger than 125%. No need for magnifier.:smile:
DId just that and full is my screen with just the first few lines. But already doubt creeps in:
Any limitations on ##q## ? If not, for ##q=1## disaster looms ...

Or did my magnifier disrupt something ?

##\ ##
 
  • Like
  • Informative
Likes   Reactions: WMDhamnekar and FactChecker
BvU said:
DId just that and full is my screen with just the first few lines. But already doubt creeps in:
Any limitations on ##q## ? If not, for ##q=1## disaster looms ...

Or did my magnifier disrupt something ?

##\ ##
I have written the answer in LaTeX form now. :smile:
 
WMDhamnekar said:
I have written the answer in LaTeX form now. :smile:
But the question is lost ... and I think there's somethimg very wrong with it ...

1679744096360-png.png
 
BvU said:
But the question is lost ... and I think there's somethimg very wrong with it ...

View attachment 324043
I have written question also in LaTeX form now.
 
You need to address the issue that @BvU brought up in post #4. It's hard to prove something that is incorrect. When ##q=1##, ##S_n = n## and ##Y_n = e^n \rightarrow \infty##.
 
  • Like
Likes   Reactions: WMDhamnekar
FactChecker said:
You need to address the issue that @BvU brought up in post #4. It's hard to prove something that is incorrect. When ##q=1##, ##S_n = n## and ##Y_n = e^n \rightarrow \infty##.
Sorry, I forgot to provide one additional information. For ##q =\displaystyle\frac{1}{e+1}, Y_n## is a martingale.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K