MHB Why does $Y_n$ have that specific form?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Form
Click For Summary
The discussion centers on the form of the sequence $Y_n$ derived from the Pell equation and its relation to the binomial theorem. It is established that $Y_n$ can be expressed as a sum involving odd-indexed terms from the expansion of $(T + U)^n$, where $U^2 = T^2 - 1$. The terms corresponding to even indices contribute to $X_n$, while the odd terms contribute to $UY_n$. The key insight is that when evaluated at $T = 1$, the sum simplifies, leading to the conclusion that $Y_n \sim n$. The participants clarify the breakdown of the sums and the significance of the terms, ultimately achieving a better understanding of the polynomial relationships involved.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be any integral domain of characteristic zero.
We consider the Pell equation $$X^2-(T^2-1)Y^2=1\tag 1$$ over $R[T]$. Let $U$ be an element in the algebraic closure of $R[T]$ satisfying $$U^2=T^2-1\tag 2$$ Define two sequences $X_n, Y_n, n=0, 1, 2, \dots $, of polynomials in $\mathbb{Z}[T]$, by setting $$X_n+UY_n=(T+U)^n\tag 3$$

Lemma 1.

The solutions of $(1)$ in $R[T]$arwe given precisely y $$X=\pm X_n , Y=\pm Y_n , n=0, 1, 2, \dots$$ We write $V \sim W$ to denote that the polynomials $V$ and $W$ in $R [T]$ take the same value at $T = 1$. Notice that the relation $Z \sim 0$ is diophantine over $R [T]$ with coefficients in $\mathbb{Z}[T]$, indeed $$Z \sim 0 \leftrightarrow \exists X \in R[T]: Z=(T-1)X$$

Lemma 2.

We have $Y_n \sim n$, for $n=0, 1, 2, \dots $.

Proof.

From $(3)$ and $(2)$ follows $$Y_n=\sum_{i=1, i \text{ odd }}^{n}\binom{n}{i}(T^2-1)^{(i-1)/2}T^{n-i}$$ Substitute now $T=1$.
Could you explain to me the proof of the Lemma $2$?

I haven't understood it...

Why is $Y_n$ of that form?
 
Physics news on Phys.org
Hi mathmari,

The form you see for $Y_n$ results from applying the binomial theorem to the right-hand side of $(3)$, then using $(2)$ to express $Y_n$ all in terms of $T$. Indeed, by the binomial theorem,

$$X_n + UY_n = (T + U)^n = \sum_{k = 0}^n \binom{n}{k}T^{n-k}U^k.$$

The terms of the sum for which $k$ is even is $X_n$. Consider all terms of the sum above for which $k$ is odd. For all such $k$, $(k-1)/2$ is a positive integer and $U^k =UU^{k-1} = U(U^2)^{(k-1)/2} = U(T^2 - 1)^{(k-1)/2}$. Hence

$$\sum_{0\le k \le n,\, k\, \text{odd}} \binom{n}{k}T^{n-k}U^k = U\sum_{1\le k\le n,\, k\, \text{odd}} \binom{n}{k}(T^2 - 1)^{(k-1)/2}T^{n-k} = UY_n,$$

and so

$$Y_n = \sum_{1\le k\le n,\, k\, \text{odd}} \binom{n}{k}(T^2 - 1)^{(k-1)/2}T^{n-k}.$$

Now

$$Y_n = n + \sum_{3\le k \le n,\, k\, \text{odd}} \binom{n}{k}(T^2 - 1)^{(k-1)/2}T^{n-k} \qquad (*)$$

and when $T = 1$, all terms in the sum on the right-hand side of $(*)$ are zero. Therefore, $T_n \sim n$.
 
Euge said:
The terms of the sum for which $k$ is even is $X_n$.

Why are the terms of the sum for which $k$ is even, $X_n$ ?

Does this mean that the terms of the sum for which $k$ is odd, is $UY_n$ ? Why?
Euge said:
$$Y_n = n + \sum_{3\le k \le n,\, k\, \text{odd}} \binom{n}{k}(T^2 - 1)^{(k-1)/2}T^{n-k} \qquad (*)$$

Why does this hold?
 
mathmari said:
Why are the terms of the sum for which $k$ is even, $X_n$ ?

Does this mean that the terms of the sum for which $k$ is odd, is $UY_n$ ? Why?

Perhaps I should put it this way. We break up the sum $\sum\limits_{k = 0}^n \binom{n}{k}T^{n-k}U^k$ into even and odd parts. Let $A_n$ be the sum of the even parts and $B_n$ the sum of the odd parts. As I've shown, $B_n = UC_n$, where $C_n$ is the element of $\Bbb Z[T]$ given by $C_n = \sum\limits_{1 \le k \le n,\, k\, \text{odd}} \binom{n}{k}(T^2 - 1)^{(k-1)/2}T^k$. Now we have expressed $(T + U)^n = A_n + UC_n$, where $A_n, B_n \in \Bbb Z[T]$ have been determined. Thus $X_n = A_n$ and $Y_n = C_n$. I hope this makes more sense.As for your last question, the $n$ appearing from the right-hand side of $(*)$ comes from the $k = 1$ term of $Y_n$. That's all there is to it.

Edit: By the way, $A_n \in \Bbb Z[T]$ since we can express

$$A_n = \sum_{0\le k\le n,\, k\, \text{even}} \binom{n}{k}T^{n-k}(T^2-1)^{k/2}.$$
 
Last edited:
Euge said:
Perhaps I should put it this way. We break up the sum $\sum\limits_{k = 0}^n \binom{n}{k}T^{n-k}U^k$ into even and odd parts. Let $A_n$ be the sum of the even parts and $B_n$ the sum of the odd parts. As I've shown, $B_n = UC_n$, where $C_n$ is the element of $\Bbb Z[T]$ given by $C_n = \sum\limits_{1 \le k \le n,\, k\, \text{odd}} \binom{n}{k}(T^2 - 1)^{(k-1)/2}T^k$. Now we have expressed $(T + U)^n = A_n + UC_n$, where $A_n, B_n \in \Bbb Z[T]$ have been determined. Thus $X_n = A_n$ and $Y_n = C_n$. I hope this makes more sense.As for your last question, the $n$ appearing from the right-hand side of $(*)$ comes from the $k = 1$ term of $Y_n$. That's all there is to it.

Edit: By the way, $A_n \in \Bbb Z[T]$ since we can express

$$A_n = \sum_{0\le k\le n,\, k\, \text{even}} \binom{n}{k}T^{n-k}(T^2-1)^{k/2}.$$
I got it! Thanks for the explanation! (Sun)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 5 ·
Replies
5
Views
865
  • · Replies 26 ·
Replies
26
Views
759
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
48
Views
4K
Replies
1
Views
2K