r0bHadz said:
Is there any logical way of explaining of why the probability of picking the car can't change
Pardon me for making one small change to what you asked. I did it because "can't" is usually used in explanations. And there isn't a reason why it can't change, because it can. (Don't hit the "reply" button yet.)
Under the assumptions that you should make about how the host chooses a door to open, it won't change. But how this comes about is seldom explained. And I believe that the reason the problem keeps coming back, is because intelligent puzzle-solvers, who are inexperienced in probability, can sense that the assertion "it can't change" hasn't been supported.
Go back to the start of the thread, where you said that your original choice had a 1/3 chance of having the prize. This is a step everybody takes for granted, but you may not know why:
- The reason is that you have no information that can make your assessment of door #1's chances different than door #2, or door #3.
- In such cases, you can only treat them as if they are all equally likely.
- This is called the Principle of Indifference. When there are N options that you cannot distinguish from each other, except by name, then each has a 1/N probability of being the actual case. That way they add up to 1.
- This remains true even if there is information, unknown to you, that can make them different. If I ask you to call a coin flip, you have a 50% chance to get it right even if I know that it favor one side. Say the bias is B. Since you don't know which result is favored, there is a B/2 chance that you will pick the favored side and win, and a (1-B)/2 chance that you will pick the unfavored side and win. Since B/2+(1-B)/2=1/2, your chances of winning are 50%.
The reason people think that the two remaining doors should each have a 50% probability, is because they apply the Principle of Indifference to them. But the set of information you have about each is different:
Set 1: There is one door that the host could have opened, and did.
Set 2: There is one door that the host could have opened, but did not.
Case A: If it has the prize, he could not have opened it.
Case B: If it does not, that means your door has it. But in this case, the host had to choose between the two doors you didn't pick.
Set 3: There is one door that the host not could have opened; the door you choose.
Only the door that Set 3 applies to is unaffected by what you learned when the host opened a door. The door that Set 1 applies to is eliminated. The door that Set 2 applies to is different, and that difference is why the probabilities for Cases A and B are different. Specifically, the probability for Case B needs to be reduced to account for the chance that the host would have opened a different door. Since you can only assume (remember the Principle of Indifference?) that the host would have chosen the other door half of the time, Case B is not half as likely as Case A. To make them add up to 100%, you make the probability for Case A 2/3, and the probability for case B 1/3.
+++++
This kind of problem fools many people, including many who should know better. Paul Erdos was one, but he recognized and admitted his error. Here is another, that I will probably get arguments about:
Q1: I have two children. What is the probability that both have the same gender?
There are four possible gender combinations, which I ordered by alphabetizing their first names: BB, BG, GB, and GG. Each is equally likely (remember the Principle of Indifference?), so the probability of (BB or GG) is 1/4+1/4=1/2.
Q2: At least one of them is a boy. Now what is the probability that both have the same gender?
Most teachers will remove the GG possibility, and apply the Principle of Indifference to BB, BG, and GB to get an answer of 1/3. This is the exact same solution that makes people say the answer in the Monty Hall Problem is 1/2.
The PoI does not apply anymore, for the same reason it doesn't in the Monty Hall Problem. There is one combination that I can't have (GG) since I would have had to tell you about a girl, two where I could have told you about a boy or a girl (BG and GB), and one where I could only tell you about a boy (BB). The same reasoning as above applies, but now there are two cases that are reduced by half. The probability I have BB is 1/2, that I have BG is 1/4, and that I have GB is 1/4.
And if you don't believe me, consider how you would have answered:
Q2.1: At least one of them is a girl. Now what is the probability that both have the same gender?
Q2.2: I wrote the gender of at least one on a notepad in front of me. Now what is the probability that both have the same gender?
Q2.1 and Q2.2 must have the same answer as Q2. But it would be a paradox if the information in Q2.2 makes its answer different is than the answer to Q1, since you have no information that is different. This paradox actually has a name: Bertrand's Box Paradox (no, Bertrand didn't refer to the problem as a "paradox,", he used this paradox to explain why the answer to all of the Q2's must be the same as Q1).