Look at the "do not switch" strategy. Initially (before any doors are opened) you have P(win) = 1/3, P(lose) = 2/3. If the car is behind your chosen door, Monty opens one of the other doors, so you still win. However, if the car is not behind your door, Monty opens the other door (because you have chosen one door already, and Monty avoids opening the car-door). So, in any case you lose, and the chance of that is 2/3. So, basically, by not switching it does not matter whether Monty opens a door or not; you still have P(win) = 1/3, P(lose) = 2/3. In this case, your statement that the probability of picking the car does not change is correct.
Now look at the "always switch" strategy. In 1/3 of the cases the car is behind your chosen door, so switching will cause you to lose. However, in 2/3 of the cases the car is not behind either your original door or the door opened by Monty, so switching will cause you to win---every single time. So, switching leads to P(win) = 2/3 and P(lose) = 1/3. In this case, by switching, you do, in fact, change the probabilities of winning the car