I Why don't we consider ##E_{com}## while solving a two body problem?

Kashmir
Messages
466
Reaction score
74
While studying two interacting particles such as a Hydrogen atom, I learned how to reduce the problem into two independent parts by using center of mass coordinates and the relative coordinates.

The resulting two independent energy eigenvalue equations give me two eigenvalues for energy as:
##\begin{aligned} H_{C M} \psi_{C M}(\mathbf{R}) &=E_{C M} \psi_{C M}(\mathbf{R}) \\ H_{r e l} \psi_{r e l}(\mathbf{r}) &=E_{r e l} \psi_{r e l}(\mathbf{r}) \end{aligned}##

The total energy of the system is the sum of these two.

However while studying ahead, the energy contribution of centre of mass Hamiltonian was never considered again and all the talk was about the energy eigenvalue we get from the relative Hamiltonian.

Why is this so? Why don't we consider the other part? If we measure the energy in the laboratory, what result will I get, the total energy as a sum of two parts or the relative one?

Thank you.
 
Physics news on Phys.org
Kashmir said:
However while studying ahead, the energy contribution of centre of mass Hamiltonian was never considered again and all the talk was about the energy eigenvalue we get from the relative Hamiltonian.

Why is this so? Why don't we consider the other part? If we measure the energy in the laboratory, what result will I get, the total energy as a sum of two parts or the relative one?

Thank you.
If a hydrogen atom undergoes a transition by absorbing or emitting a photon, then the energy is almost entirely the difference in the electron's energy level.

You could calculate for yourself a small correction by considering the atom recoiling by conservation of momentum.

That said, in astronomy, the redshift due to relative velocity of the source and detector affects the measured wavelengths.
 
  • Like
Likes protonsarecool, Demystifier and vanhees71
In the laboratory, there is also a widening of the spectral lines due to the Doppler effect caused by the translational motion of the atoms.
 
  • Like
Likes protonsarecool, Demystifier, PeroK and 1 other person
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top