Why is 2x - 4 less than 1 in this inequality?

  • Context: MHB 
  • Thread starter Thread starter Casio1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality 2x - 4 < 1 leads to the conclusion that x must be less than 2.5. The discussion clarifies that while x can approach 2.5, it cannot equal this value, as the inequality does not include equality. Substituting x = 2.5 into the original inequality results in 1 < 1, which is false. Therefore, the solution set includes all values of x that are strictly less than 2.5, confirming that the intersection point at x = 2.5 is not part of the solution.

PREREQUISITES
  • Understanding of basic algebraic inequalities
  • Familiarity with substitution methods in inequalities
  • Knowledge of geometric interpretation of inequalities
  • Ability to manipulate and simplify algebraic expressions
NEXT STEPS
  • Study the properties of inequalities and their solution sets
  • Learn about strict versus non-strict inequalities
  • Explore geometric interpretations of linear inequalities
  • Practice solving various types of inequalities, including compound inequalities
USEFUL FOR

Students learning algebra, educators teaching inequalities, and anyone seeking to improve their understanding of algebraic expressions and inequalities.

Casio1
Messages
86
Reaction score
0
Hi everyone

I have an inequality

2x - 4 < 1

I had to double check it to ensure I wrote it down correctly.

2x < 1 + 4

x < 2.5

2(2.5) - 4 < 1

1 < 1

Is this me or am I missing something?

2x - 4 < 1 reads to me as 2x - 4 should be less than < 1 and not equal to it?
 
Mathematics news on Phys.org
In order to check it you should try numbers less than $5/2$, not equal to. Once you plugged it in the original equation it was good that it wasn't a solution, or else something would have went horribly wrong. Try $x=2$. (Nod)
 
Yes I see what you mean when putting 2 into the inequality, but I am making that figure up knowing it will be less than 1?

My misunderstanding seems to be that finding the value of 'x' in this example does not prove the inequality correct?

I must be missing something here as x = 2.5 but for some reason in this example 2x - 4 < 1 mathematically does not work?

2(2.5) - 4 < 1

Is it not a typo error?

should it not be;

2(2.5) - 4 < 1
 
The values of $x$ you have found are the ones less than two and half, not equal to. Why should it be $2x+4 \leq 1$? You don't need equality. Geometrically, you have the points belonging to the line $y=2x+4$ and below the line $y=1$, but you discount the intersection, which happens at the point $x= 5/2$.

Also, note that $5/2$ is not less than itself, thus it cannot be a solution! If it doesn't belong to the solution set, it cannot satisfy the given inequality. (Nod)
 
You have found that x must be less than 2.5, so as stated above, if you let x = 2.5, then your inequality will not be true.

Let x = 2.5 - y where y may be as small or large as we desire, as long as 0 < y.

Now, substituting this into the original inequality, we find:

2(2.5 - y) - 4 < 1

5 - 2y - 4 < 1

1 - 2y < 1

0 < 2y

0 < y
 
OK I think I have got it now. I find a value for 'x' which I did at 5/2, which is in decimal form 2.5.

This value is definitely in the inequality, so is a strick value. The misunderstanding I think I had was in understanding that ALL values up to 2.5 can be considered, so if I said;

x = - 2, which is < 2.5, I could write;2(- 2) - 4 < 1- 4 - 4 < 1I understand it know, thanks everyone. :cool:
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K