Why is a module with a diagonal operator and distinct diagonal entries cyclic?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving that a finite-dimensional $K[X]$-module $V$ is cyclic when represented by a diagonal matrix $\Delta$ with distinct diagonal entries. The operator $\phi$ associated with $V$ is represented by $\Delta$, which has no nonzero entries off the diagonal. The conclusion is that the distinctness of the diagonal entries ensures that the module generated by any single element spans the entire module, confirming its cyclic nature.

PREREQUISITES
  • Understanding of finite-dimensional $K[X]$-modules
  • Knowledge of linear operators and their matrix representations
  • Familiarity with diagonal matrices and their properties
  • Concept of cyclic modules in abstract algebra
NEXT STEPS
  • Study the properties of cyclic modules in the context of $K[X]$-modules
  • Explore the implications of distinct eigenvalues in linear algebra
  • Learn about the structure of finite-dimensional vector spaces
  • Investigate the relationship between diagonal matrices and linear transformations
USEFUL FOR

Mathematicians, algebra students, and educators interested in abstract algebra, particularly those focusing on module theory and linear algebra concepts.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Let $V$ be a finite-dimensional $K[X]$-module, and let $\phi$ be the associated operator on $V$. Suppose that $\Delta$ represents $\phi$ with respect to some basis. Prove that if $\Delta$ is a diagonal matrix (no nonzero entries off the diagonal), and the diagonal entries of $\Delta$ are pairwise distinct, then $V$ is a cyclic $K[X]$-module.

-----

 
Physics news on Phys.org
No one answered this week's question. You can find my solution below.

Suppose \begin{equation*}
\Delta =
\left(
\begin{array}{cccc}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2& \cdots & 0 \\
\vdots& \vdots & \ddots & \vdots\\
0 & 0& \cdots &\lambda_n \\
\end{array}
\right)
\end{equation*}
where $\lambda_i \neq \lambda_j$, for $i \neq j;\ i,j = 1,2,\cdots, n$. Then for $k=1,2,\cdots,n-1$,
\begin{equation*}
\Delta^k = \left(
\begin{array}{cccc}
\lambda^k_1 & 0 & \cdots & 0 \\
0 & \lambda^k_2& \cdots & 0 \\
\vdots& \vdots & \ddots & \vdots\\
0 & 0& \cdots &\lambda^k_n \\
\end{array}
\right)
\end{equation*}

Let $v = (1,1,\cdots,1)^T \in V$, then for $k=1,2,\cdots,n-1$,
$$\phi^k(v) = \Delta^k v = (\lambda^k_1, \lambda^k_2, \cdots, \lambda^k_n)^T.$$

Now we prove that $\{v,\phi(v),\phi^2(v), \cdots, \phi^{n-1}(v)\}$ are linearly independent. Suppose for $k_1,k_2,\cdots,k_n \in K$,
$$k_1 v + k_2\phi(v) + k_3\phi^2(v) + \cdots + k_n\phi^{n-1}(v) = 0.$$

i.e.

\begin{equation*} k_1
\left(
\begin{array}{c}
1 \\
1\\
\vdots \\
1\\
\end{array}
\right)
+k_2 \left(
\begin{array}{c}
\lambda_1 \\
\lambda_2\\
\vdots \\
\lambda_n\\
\end{array}
\right) +\cdots+ k_n \left(
\begin{array}{c}
\lambda^{n-1}_1 \\
\lambda^{n-1}_2\\
\vdots \\
\lambda^{n-1}_n\\
\end{array}
\right) = 0.
\end{equation*}

That is
\begin{equation*}
\left(
\begin{array}{cccc}
1 & \lambda_1 & \cdots & \lambda^{n-1}_1 \\
1 & \lambda_2& \cdots & \lambda^{n-1}_2 \\
\vdots& \vdots & \ddots & \vdots\\
1 & \lambda_n& \cdots &\lambda^{n-1}_n \\
\end{array}
\right)
\left(
\begin{array}{c}
k_1 \\
k_2\\
\vdots \\
k_n\\
\end{array}
\right) = 0.
\end{equation*}

The matrix is a Vandermonde Matrix above, therefore
\begin{equation*}
\det
\left(
\begin{array}{cccc}
1 & \lambda_1 & \cdots & \lambda^{n-1}_1 \\
1 & \lambda_2& \cdots & \lambda^{n-1}_2 \\
\vdots& \vdots & \ddots & \vdots\\
1 & \lambda_n& \cdots &\lambda^{n-1}_n \\
\end{array}
\right) = \prod_{1\leqslant i < j \leqslant n} (\lambda_i - \lambda_j).
\end{equation*}

By the presumption, $\lambda_i \neq \lambda_j$, for $i \neq j$. Hence the determinant above is non-zero. Therefore the matrix is non-singular. Thus the equations admit only zero solution. i.e.
$$k_1 = k_2 = \cdots = k_n = 0.$$
Hence $\{v,\phi(v),\phi^2(v), \cdots, \phi^{n-1}(v)\}$ are linearly independent, and it is a basis for $V$. By definition, $V$ is a cyclic $K[X]$-module.
 

Similar threads

Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K