I Why is my derivation of the catenary wrong?

AI Thread Summary
The discussion centers on the differentiation of the tangent function, specifically addressing a common mistake in its approximation. The tangent approximation used, tan(theta + dtheta) ~ tan(theta) + dtheta, is identified as incorrect. The proper differentiation of tan(theta) should involve the quotient rule, leading to a more accurate expression. Participants agree on the need for careful application of differentiation rules in this context. The emphasis is on understanding the correct mathematical approach to avoid errors in solving differential equations.
phantomvommand
Messages
287
Reaction score
39
TL;DR Summary
I have "derived" a differential equation for the catenary, and have attached my working. It looks slightly different from the correct expression, which can be found here: https://www.math24.net/equation-catenary

Please do tell me where I made a mistake. Thank you!
Important note: I only derived the differential equation, I did not solve it.

WhatsApp Image 2021-03-04 at 1.22.37 AM.jpeg

What I think caused the mistake:
- the tangent approximation (tan(theta+dtheta) ~ tan theta + d theta
 
Physics news on Phys.org
Hi,

phantomvommand said:
What I think

That's what I think too :wink:
The proper way to differentiate ##\tan\theta## is not ##{d\tan\theta\over d\theta} = 1 ## but $${d\tan\theta\over d\theta} = {d\over d\theta}\Biggl ( {\sin\theta\over\cos\theta}\Biggr ) =\ ... $$
##\ ##​
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top