MHB Why is the implication obvious?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    implication
Click For Summary
The discussion centers on proving that the least common multiple (LCM) of two non-zero integers, a and b, shares the same common multiples as a and b themselves. The proof demonstrates that if a divides m and b divides m, then m can be expressed in terms of the LCM, leading to the conclusion that the remainder r must be zero. Consequently, this implies that the LCM divides m, which in turn confirms that both a and b must also divide m. The final implication is considered obvious because the properties of divisibility ensure that if the LCM divides m, then both a and b must divide m as well. The discussion concludes with an affirmation of understanding regarding the implications of these mathematical relationships.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

I am looking at the proof of the follwing sentence:

Let $a,b \neq 0$.
The common multiples of $a,b$ are the same as the multiples of $[a,b]$, where $[a,b]$ is the least common multiple of $a \text{ and } b$.

  • Let $a \mid m, b \mid m$

    $$m=q \cdot [a,b]+r , \ 0 \leq r < [a,b] (1) $$

    $$a \mid m, a \mid [a,b] \Rightarrow a \mid r$$

    $$b \mid m, b \mid [a,b] \Rightarrow b \mid r$$

    So, $r$ is a common multiple of $a,b$.

    As $[a,b]$ is the least common multiple of $a,b$, we conclude from the relation $(1)$ that $r=0$,so $m=q \cdot [a,b]$ and so we conclude that $[a,b] \mid m$
  • $$[a,b] \mid m \Rightarrow a \mid m, b \mid m$$

    According to my notes the last implication is obvious. But...why is it like that? :confused: (Thinking)
 
Mathematics news on Phys.org
We know that $a \mid [a,b]$ and $b \mid [a,b]$ since $[a,b]$ is a common multiple of both $a$ and $b$. So if $[a,b] \mid m$, it follows immediately that $a \mid m$ and $b \mid m$. (I.e., if $a \mid b$ and $b \mid c$, then $a \mid c$.)
 
magneto said:
We know that $a \mid [a,b]$ and $b \mid [a,b]$ since $[a,b]$ is a common multiple of both $a$ and $b$. So if $[a,b] \mid m$, it follows immediately that $a \mid m$ and $b \mid m$. (I.e., if $a \mid b$ and $b \mid c$, then $a \mid c$.)

Oh yes,right! Thank you very much! (Nerd) :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K