Undergrad Why is this function not ##L^1(\mathbb{R} \times \mathbb{R})##?

Click For Summary
The discussion centers on why the function f(u)e^{iω(t-u)} is not in L^1(ℝ × ℝ), preventing the swapping of integrals in the Fourier inverse theorem. Participants highlight that the complex exponential is not always bounded and that functions like sin and cos are not integrable over ℝ. The convergence of the inner integral, specifically ∫e^{-iωu} dω, is questioned, as it does not yield a well-defined function due to the non-integrability of oscillatory components. Additionally, it is noted that for a function to belong to L^1(ℝ), it must decrease sufficiently fast, even if it is bounded. Understanding these properties is crucial for verifying integrability in this context.
laurabon
Messages
17
Reaction score
0
Hi everyone in the following expression
##f(t)=\frac{1}{2 \pi} \int\left(\int f(u) e^{-i \omega u} d u\right) e^{i \omega t} d \omega ##

the book says I can't swap integrals bacause the function

##f(u) e^{i \omega(t-u)}## is not ## L^1(\mathbb{R} \times \mathbb{R})##

why ? complex exponential is not always bounded?
 
Physics news on Phys.org
What properties does ##f(u)## have?
 
FactChecker said:
What properties does ##f(u)## have?
it is Fuorier inverse theorem with ##f## in ##L^1(\mathbb{R})##
 
laurabon said:
Hi everyone in the following expression
##f(t)=\frac{1}{2 \pi} \int\left(\int f(u) e^{-i \omega u} d u\right) e^{i \omega t} d \omega ##

the book says I can't swap integrals bacause the function

##f(u) e^{i \omega(t-u)}## is not ## L^1(\mathbb{R} \times \mathbb{R})##

why ? complex exponential is not always bounded?
Note that ##\sin## and ##\cos## are not integrable over ##\mathbb R##.
 
  • Like
Likes FactChecker
PeroK said:
Note that ##\sin## and ##\cos## are not integrable over ##\mathbb R##.
I came up with this . Is correct? ##
\begin{aligned}
& \left|f(u) e^{i \omega(t-u)}\right|=|f(u)| \\
& \iint|f(u)|=\int_{-\infty}^{\infty} c = \infty
\end{aligned}##

how should I use the fact that sin and cosine are not integrable ?I mean to verify that is in L1 I always have to use the fact that ##|e^{i \omega(t-u)}|=1## I think
 
laurabon said:
I came up with this . Is correct? ##
\begin{aligned}
& \left|f(u) e^{i \omega(t-u)}\right|=|f(u)| \\
& \iint|f(u)|=\int_{-\infty}^{\infty} c = \infty
\end{aligned}##

how should I use the fact that sin and cosine are not integrable ?I mean to verify that is in L1 I always have to use the fact that ##|e^{i \omega(t-u)}|=1## I think
I don't think that works. First, let's take ##t = 0##, where the integral reduces to:
$$f(0) = \int_{-\infty}^{+\infty} \bigg ( \int_{-\infty}^{+\infty}f(u)e^{-iwu}\ du \bigg ) \ dw$$If we try to swap the integrals and look at:$$\int_{-\infty}^{+\infty} f(u) \bigg ( \int_{-\infty}^{+\infty}e^{-iwu}\ dw \bigg ) \ du$$We can see immediately that the inner integral does not converge and does not represent a well-defined function of ##u##. Because neither ##\cos(wu)## nor ##\sin(wu)## is integrable with respect to ##w## on all of ##\mathbb R##.
 
  • Like
Likes FactChecker
laurabon said:
Hi everyone in the following expression
##f(t)=\frac{1}{2 \pi} \int\left(\int f(u) e^{-i \omega u} d u\right) e^{i \omega t} d \omega ##

the book says I can't swap integrals bacause the function

##f(u) e^{i \omega(t-u)}## is not ## L^1(\mathbb{R} \times \mathbb{R})##

why ? complex exponential is not always bounded?
Notice f(x)==1 is also bounded. To be able to be in ##L^1(X)## , where ##X## itself is unbounded, your f has to decrease fast-enough.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K