The Pauli equation (seen here) contains its spin dependence in the term which reads(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\frac{1}{2m}\left[ \sigma\cdot\left(p-\frac{e}{c}A\right)\right]^2[/tex]

So let B be any vector. Then

[tex]\left( \sigma\cdot B\right)^2[/tex]

[tex]=\left(\sigma_1 B_1 +\sigma_2 B_2 + \sigma_3 B_3\right)\left(\sigma_1 B_1 +\sigma_2 B_2 + \sigma_3 B_3\right)[/tex]

[tex]=\sigma_1^2 B_1^2 +\sigma_2^2 B_2^2+\sigma_3^2 B_3^2 + (\sigma_1\sigma_2+\sigma_2\sigma_1)B_1 B_2 + (\sigma_1\sigma_3+\sigma_3\sigma_1)B_1 B_3 + (\sigma_3\sigma_2+\sigma_2\sigma_3)B_3 B_2[/tex]

[tex]=1\cdot B_1^2 + 1\cdot B_2^2 + 1\cdot B_3^2 + 0 + 0 +0[/tex]

[tex]=B^2[/tex]

So isn't the sigma-dependent term in the Pauli equation identically equal to

[tex]\frac{1}{2m}\left(p-\frac{e}{c}A\right)^2[/tex]

?

if yes, then in what sense is it spin-dependent? If no, then where did I go wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Why isn't the Pauli equation equivalent to the Schrodinger equation?

**Physics Forums | Science Articles, Homework Help, Discussion**