Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why will this function always be an integer?

  1. Nov 10, 2014 #1
    f(n) is defined as 11x22x33....xnn

    Then it seems as if f(n)/(f(r).f(n-r)) is always an integer for 0 < r < n.
    I tried a few cases. Its true for them. Is it always true? I cannot seem to figure out any ways to prove it.
     
  2. jcsd
  3. Nov 10, 2014 #2
    I presume r and n are integers?
     
  4. Nov 10, 2014 #3

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    x means multiplication? * would be clearer.

    You can prove it with the fact that ##{n \choose c} = \frac{n!}{c! (n-c)!}## is always an integer.
     
  5. Nov 12, 2014 #4
    It is trivially true since the set of all integers is closed under the operation of multiplication (exponentiation being a special case of multiplication).
     
  6. Nov 12, 2014 #5

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    There is a division...
     
  7. Nov 12, 2014 #6
    I think I might have missread the f(n)/(f(r).f(n-r)) statement in the OP by reading to quickly. When I look at it now it makes no sence at all unless someone defines the "."-operator.
     
  8. Nov 12, 2014 #7

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    I assumed it to be a multiplication, too.
     
  9. Nov 25, 2014 #8
    This is the "hyperfactorial", ##H(n)## (assuming the x is multiplication). It is defined as
    ##H(n) = \prod_{i=1}^{n} i^i ##.
    Just by looking at it, I don't see any reason to believe it wouldn't be an integer at any point. I don't know if there's an explicit proof of this out there, but generally, an integer multiplied any number of times by itself is an integer, and when added to another integer that has undergone the same process, it should still be an integer. Of course, ##n## can be really large, so I can't say with any certainty what happens as the product has more and more (perhaps infinite) terms.
    Interesting question--I'm curious now!
    I'd love for other members to contribute to this.
     
  10. Nov 25, 2014 #9

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    There is a division! It makes the question not trivial. Here it is in red:
    $$\frac{f(n)}{f(r)f(n-r)}$$

    Still always an integer, but you have to prove it.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Why will this function always be an integer?
Loading...