Wondering e=mc^2 is derived from what equations

  • Thread starter Thread starter karan1114
  • Start date Start date
  • Tags Tags
    E=mc^2
Click For Summary
E=mc² was derived by Einstein in his 1905 paper "Does the inertia of a body depend upon its energy content?" The equation illustrates the equivalence of mass and energy, showing that when an object emits energy, its mass decreases by E/c². Although the original derivation involves the speed of light, E=mc² can also be derived without referencing light, using the concept of the maximum speed of causality. The momentum four-vector formulation leads to the relationship E² - p²c² = m²c⁴, reinforcing the equation's validity. This foundational principle connects mass and energy in the framework of relativity.
karan1114
Messages
4
Reaction score
0
i was just wondering e=mc^2 is derived from what equations and is linked to which other.
 
Physics news on Phys.org


There are lots of threads about this. This is what I said in one of them.
 


FAQ: Where does E=mc2 come from?

Einstein found this result in a 1905 paper, titled "Does the inertia of a body depend upon its energy content?" This paper is very short and readable, and is available online. A summary of the argument is as follows. Define a frame of reference A, and let an object O, initially at rest in this frame, emit two flashes of light in opposite directions. Now define another frame of reference B, in motion relative to A along the same axis as the one along which the light was emitted. Then in order to preserve conservation of energy in both frames, we are forced to attribute a different inertial mass to O before and after it emits the light. The interpretation is that mass and energy are equivalent. By giving up a quantity of energy E, the object has reduced its mass by an amount E/c2, where c is the speed of light.

Why does c occur in the equation? Although Einstein's original derivation happens to involve the speed of light, E=mc2 can be derived without talking about light at all. One can derive the Lorentz transformations using a set of postulates that don't say anything about light (see, e.g., Rindler 1979). The constant c is then interpreted simply as the maximum speed of causality, not necessarily the speed of light. We construct the momentum four-vector of a particle in the obvious way, by multiplying its mass by its four-velocity. (This construction is unique in the sense that there is no other rank-1 tensor with units of momentum that can be formed from m and v. The only way to form any other candidate is to bring in other quantities, such a constant with units of mass, or the acceleration vector. Such possibilities have physically unacceptable properties, such as violating additivity or causality.) We find that this four-vector's norm equals E2-p2c2, and can be interpreted as m2c4, where m is the particle's rest mass. In the case where the particle is at rest, p=0, and we recover E=mc2.

A. Einstein, Annalen der Physik. 18 (1905) 639, available online at http://www.fourmilab.ch/etexts/einstein/E_mc2/www/

Rindler, Essential Relativity: Special, General, and Cosmological, 1979, p. 51
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...

Similar threads

  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 28 ·
Replies
28
Views
6K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 55 ·
2
Replies
55
Views
6K