MHB Word problem: distance traveled

Click For Summary
The discussion revolves around solving a word problem involving distance traveled by two objects based on their revolutions. The user initially derives equations for distance covered by each object and finds a relationship between their revolutions. They arrive at a solution that matches the book's answer but question why plugging their derived value back into the first equation yields a different result. Another participant clarifies that plugging the value into the first equation actually confirms the consistency of the derived answer. Ultimately, both participants agree that the calculations align correctly, resolving the user's confusion.
NotaMathPerson
Messages
82
Reaction score
0
Here' s my attempt

$r=$revolution taken by first
$r+c=$ revolutiin taken by 2nd

$d=a(r+c)$ distance covered by first (1)
$d=br$ distance covered by 2nd (2)

$br=a(r+c)$ solving for r $r=\frac{ac}{b-a}$ and plug into (2)

I get $a=\frac{abc}{b-a}$ this answers agrees with the key answer in the book.

But my question is why do I get different answer when I plug $r$ to eqn. (1)?

Thanks!
 

Attachments

  • Q26hallXVI.jpg
    Q26hallXVI.jpg
    12.1 KB · Views: 97
Mathematics news on Phys.org
NotaMathPerson said:
Here' s my attempt

$r=$revolution taken by first
$r+c=$ revolutiin taken by 2nd

$d=a(r+c)$ distance covered by first (1)
$d=br$ distance covered by 2nd (2)

$br=a(r+c)$ solving for r $r=\frac{ac}{b-a}$ and plug into (2)

I get $a=\frac{abc}{b-a}$ this answers agrees with the key answer in the book.

You mean $d=\frac{abc}{b-a}$, don't you?
NotaMathPerson said:
But my question is why do I get different answer when I plug $r$ to eqn. (1)?

Plugging $r$ into (1) we get the following:
$$d=a(r+c) =a\left (\frac{ac}{b-a}+c\right )=a\left (\frac{ac+c(b-a)}{b-a}\right )=a\frac{ac+cb-ac}{b-a}=a\frac{bc}{b-a}=\frac{abc}{b-a}$$

So, we get the same result.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
13
Views
2K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K