Would Partial Fractions Simplify This Integral?

Click For Summary

Discussion Overview

The discussion revolves around the integral $\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx$. Participants explore whether partial fractions would be an effective method for simplification, considering various substitution techniques and integration formulas.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests using partial fractions for the integral, questioning its effectiveness.
  • Another proposes a substitution $u=\sqrt{x^2+4x+3}$, leading to a transformed integral $\int\frac{1}{u^2+1}\,du$.
  • Several participants reference the standard form of the integral $\int\frac{1}{a^2+x^2}\,dx$ and attempt to apply it to their expressions.
  • There is a discussion about the correct interpretation of parameters in the integration formula, particularly the value of $a$ in relation to $u$ and $x$.
  • One participant questions whether the order of terms in the expression $u^2 + 1$ matters, while another asserts that it does not due to the commutative property of addition.
  • Another participant expresses concern that some are using integration formulas without fully understanding them, emphasizing the importance of foundational arithmetic principles.
  • A later reply reiterates the substitution method and provides a detailed step-by-step transformation of the integral, ultimately arriving at an expression involving $\arctan$.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for solving the integral. There are competing views on the effectiveness of partial fractions versus substitution techniques, and some participants express uncertainty about the application of integration formulas.

Contextual Notes

Some participants' approaches depend on specific assumptions about the variables and the forms of the integrals, which may not be universally applicable. The discussion includes unresolved mathematical steps and varying interpretations of integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?
 
Physics news on Phys.org
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?

I would look at a substitution like:

$$u=\sqrt{x^2+4x+3}\implies dx=\frac{u}{x+2}\,du$$

And the integral then becomes:

$$I=\int\frac{1}{u^2+1}\,du$$
 
$\displaystyle I=\int\frac{1}{u^2+1}\,du$
$\textit{then you have the standard form}\\$
\begin{align*}\displaystyle
I_{32}&=\int\frac{1}{a^2+x^2}\,dx\\
&=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
\end{align*}
$\textit{with $a=u$ and $x=1$ then}$
\begin{align*}\displaystyle
I&=\frac{1}{u}\tan^{-1}\left(\frac{x}{u}\right)+C
\end{align*}
$\textit{since $u=\sqrt{x^2+4x+3}$ and $x=1$}\\$
\begin{align*}\displaystyle
I&=\frac{1}{\sqrt{x^2+4x+3}}\tan^{-1}\left(\frac{1}{\sqrt{x^2+4x+3}}\right)+C
\end{align*}

Really?
 
Last edited:
karush said:
$\displaystyle I=\int\frac{1}{u^2+1}\,du$
$\textit{then you have the standard form}\\$
\begin{align*}\displaystyle
I_{32}&=\int\frac{1}{a^2+x^2}\,dx\\
&=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
\end{align*}
$\textit{with $a=u$ and $x=1$ then}$
\begin{align*}\displaystyle
I&=\frac{1}{u}\tan^{-1}\left(\frac{x}{u}\right)+C
\end{align*}
$\textit{since $u=\sqrt{x^2+4x+3}$}\\$
\begin{align*}\displaystyle
I&=\frac{1}{\sqrt{x^2+4x+3}}\tan^{-1}\left(\frac{x}{\sqrt{x^2+4x+3}}\right)+C
\end{align*}

Really?

In the formula you've used, we have $a=1$...and so after back-substituting for $u$:

$$I=\arctan\left(\sqrt{x^2+4x+3}\right)+C$$
 
did you flip

$u^2 + 1 $ to $1+u^2 $

to do this??
 
karush said:
did you flip

$u^2 + 1 $ to $1+u^2 $

to do this??

No, but either way will work, because of the commutative property of addition.. :D
 
so that is because

$u$ is in terms of $x$

so $a$ has to be $1$ ?
 
Last edited:
It looks like you are trying to use integration formulas without understanding them.

Yes, \int\frac{dx}{x^2+ a^2}= arctan(x/a)+ C[/tex].]

From that it also follows that \int\frac{dy}{y^2+ a^2}= arctan(y/a)+ C,

\int\frac{dt}{t^2+ a^2}= arctan(t/a)+ C and even

\int\frac{du}{u^2+ a^2}= arctan(u/a+ C.

Certainly, you should have learned that "a+ b= b+ a" back in basic arithmetic even if no one ever used the word "commutative".
 
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?

$\displaystyle \begin{align*} \int{ \frac{1}{ \left( x + 2 \right) \sqrt{x^2 + 4\,x + 3} }\,\mathrm{d}x} &= \int{ \frac{2\,x + 4}{\left( 2\,x + 4 \right) \left( x + 2 \right) \sqrt{ x^2 + 4\,x + 3}}\,\mathrm{d}x } \\ &= \int{ \frac{2\, x + 4 }{2 \left( x + 2 \right) \left( x + 2 \right) \sqrt{x^2 + 4\,x + 3} } \,\mathrm{d}x } \\ &= \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 4 \right) \sqrt{x^2 + 4\,x + 3}} \,\mathrm{d}x } \\ &= \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 3 + 1 \right) \sqrt{x^2 + 4\,x + 3}} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u= x^2 + 4\,x + 3 \implies \mathrm{d}u = \left( 2\,x + 4 \right) \, \mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 3 + 1 \right) \sqrt{x^2 + 4\,x + 3}}\,\mathrm{d}x } &= \frac{1}{2} \int{ \frac{1}{\left( u + 1 \right) \sqrt{u} } \,\mathrm{d}u } \\ &= \int{ \frac{1}{ \left( \sqrt{u } \right) ^2 + 1 }\left( \frac{1}{2\,\sqrt{u}} \right) \,\mathrm{d}u } \end{align*}$

Let $\displaystyle \begin{align*} \sqrt{u } = \tan{ \left( \theta \right) } \implies \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u = \sec^2{ \left( \theta \right) }\,\mathrm{d}\theta \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{1}{\left( \sqrt{u} \right) ^2 + 1} \left( \frac{1}{2\,\sqrt{u}} \right) \,\mathrm{d}u } &= \int{ \frac{1}{\tan^2{ \left( \theta \right) } + 1}\,\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= \int{ \frac{\sec^2{ \left( \theta \right) } }{\sec^2{ \left( \theta \right) }} \,\mathrm{d}\theta } \\ &= \int{
1\,\mathrm{d}\theta } \\ &= \theta + C \\ &= \arctan{ \left( \sqrt{u} \right) } + C \\ &= \arctan{ \left( \sqrt{ x^2 + 4\,x + 3 } \right) } + C \end{align*}$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K