Would Partial Fractions Simplify This Integral?

Click For Summary
SUMMARY

The integral \( I_{88} = \int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \) can be simplified using substitution rather than partial fractions. By letting \( u = \sqrt{x^2 + 4x + 3} \), the integral transforms into a standard form \( I = \int\frac{1}{u^2+1}\,du \), which evaluates to \( \arctan\left(\sqrt{x^2 + 4x + 3}\right) + C \). This approach effectively utilizes trigonometric identities and substitution techniques to arrive at the solution.

PREREQUISITES
  • Understanding of integral calculus, particularly substitution methods.
  • Familiarity with trigonometric integrals, specifically the integral of \( \frac{1}{u^2 + 1} \).
  • Knowledge of algebraic manipulation, including completing the square.
  • Basic understanding of the commutative property of addition in algebra.
NEXT STEPS
  • Study the method of substitution in integral calculus, focusing on complex integrals.
  • Learn about trigonometric integrals and their applications in calculus.
  • Explore the process of completing the square for quadratic expressions.
  • Review the properties of inverse trigonometric functions, particularly \( \arctan \).
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to enhance their understanding of integral techniques and trigonometric identities.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?
 
Physics news on Phys.org
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?

I would look at a substitution like:

$$u=\sqrt{x^2+4x+3}\implies dx=\frac{u}{x+2}\,du$$

And the integral then becomes:

$$I=\int\frac{1}{u^2+1}\,du$$
 
$\displaystyle I=\int\frac{1}{u^2+1}\,du$
$\textit{then you have the standard form}\\$
\begin{align*}\displaystyle
I_{32}&=\int\frac{1}{a^2+x^2}\,dx\\
&=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
\end{align*}
$\textit{with $a=u$ and $x=1$ then}$
\begin{align*}\displaystyle
I&=\frac{1}{u}\tan^{-1}\left(\frac{x}{u}\right)+C
\end{align*}
$\textit{since $u=\sqrt{x^2+4x+3}$ and $x=1$}\\$
\begin{align*}\displaystyle
I&=\frac{1}{\sqrt{x^2+4x+3}}\tan^{-1}\left(\frac{1}{\sqrt{x^2+4x+3}}\right)+C
\end{align*}

Really?
 
Last edited:
karush said:
$\displaystyle I=\int\frac{1}{u^2+1}\,du$
$\textit{then you have the standard form}\\$
\begin{align*}\displaystyle
I_{32}&=\int\frac{1}{a^2+x^2}\,dx\\
&=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
\end{align*}
$\textit{with $a=u$ and $x=1$ then}$
\begin{align*}\displaystyle
I&=\frac{1}{u}\tan^{-1}\left(\frac{x}{u}\right)+C
\end{align*}
$\textit{since $u=\sqrt{x^2+4x+3}$}\\$
\begin{align*}\displaystyle
I&=\frac{1}{\sqrt{x^2+4x+3}}\tan^{-1}\left(\frac{x}{\sqrt{x^2+4x+3}}\right)+C
\end{align*}

Really?

In the formula you've used, we have $a=1$...and so after back-substituting for $u$:

$$I=\arctan\left(\sqrt{x^2+4x+3}\right)+C$$
 
did you flip

$u^2 + 1 $ to $1+u^2 $

to do this??
 
karush said:
did you flip

$u^2 + 1 $ to $1+u^2 $

to do this??

No, but either way will work, because of the commutative property of addition.. :D
 
so that is because

$u$ is in terms of $x$

so $a$ has to be $1$ ?
 
Last edited:
It looks like you are trying to use integration formulas without understanding them.

Yes, \int\frac{dx}{x^2+ a^2}= arctan(x/a)+ C[/tex].]

From that it also follows that \int\frac{dy}{y^2+ a^2}= arctan(y/a)+ C,

\int\frac{dt}{t^2+ a^2}= arctan(t/a)+ C and even

\int\frac{du}{u^2+ a^2}= arctan(u/a+ C.

Certainly, you should have learned that "a+ b= b+ a" back in basic arithmetic even if no one ever used the word "commutative".
 
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=?
\end{align*}

would partial fractions be best for this?

$\displaystyle \begin{align*} \int{ \frac{1}{ \left( x + 2 \right) \sqrt{x^2 + 4\,x + 3} }\,\mathrm{d}x} &= \int{ \frac{2\,x + 4}{\left( 2\,x + 4 \right) \left( x + 2 \right) \sqrt{ x^2 + 4\,x + 3}}\,\mathrm{d}x } \\ &= \int{ \frac{2\, x + 4 }{2 \left( x + 2 \right) \left( x + 2 \right) \sqrt{x^2 + 4\,x + 3} } \,\mathrm{d}x } \\ &= \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 4 \right) \sqrt{x^2 + 4\,x + 3}} \,\mathrm{d}x } \\ &= \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 3 + 1 \right) \sqrt{x^2 + 4\,x + 3}} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u= x^2 + 4\,x + 3 \implies \mathrm{d}u = \left( 2\,x + 4 \right) \, \mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2} \int{ \frac{2\,x + 4}{\left( x^2 + 4\,x + 3 + 1 \right) \sqrt{x^2 + 4\,x + 3}}\,\mathrm{d}x } &= \frac{1}{2} \int{ \frac{1}{\left( u + 1 \right) \sqrt{u} } \,\mathrm{d}u } \\ &= \int{ \frac{1}{ \left( \sqrt{u } \right) ^2 + 1 }\left( \frac{1}{2\,\sqrt{u}} \right) \,\mathrm{d}u } \end{align*}$

Let $\displaystyle \begin{align*} \sqrt{u } = \tan{ \left( \theta \right) } \implies \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u = \sec^2{ \left( \theta \right) }\,\mathrm{d}\theta \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{1}{\left( \sqrt{u} \right) ^2 + 1} \left( \frac{1}{2\,\sqrt{u}} \right) \,\mathrm{d}u } &= \int{ \frac{1}{\tan^2{ \left( \theta \right) } + 1}\,\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= \int{ \frac{\sec^2{ \left( \theta \right) } }{\sec^2{ \left( \theta \right) }} \,\mathrm{d}\theta } \\ &= \int{
1\,\mathrm{d}\theta } \\ &= \theta + C \\ &= \arctan{ \left( \sqrt{u} \right) } + C \\ &= \arctan{ \left( \sqrt{ x^2 + 4\,x + 3 } \right) } + C \end{align*}$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K