MHB Would the equation have at least one solution?

  • Thread starter Thread starter evinda
  • Start date Start date
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Cool)

In order to show that the diophantine equation $y^2=x^3+7$ has no solution, we do the following:

If the equation would have a solution, let $(x_0,y_0)$, $y_0^2=x_0^3+7$, then $x_0$ is odd.

$$y_0^2=x_0^3+7 \Rightarrow y_0^2+1=x_0^3+8=(x_0+2)(x_0^2-2x_0+4)=(x_0+2)[(x_0-1)^2+3]$$

$(x_0-1)^2+3 \in \mathbb{N} \text{ and } (x_0-1)^2+3>1$.

It stands that $(x_0-1)^2+3 \equiv 3 \pmod{4}$.

So, $(x_0-1)^2+3$ has at least one prime divisor of the form $p \equiv 3 \pmod 4$, so:

$$(x_0-1)^2+3 \equiv 0 \pmod p, \text{ where } p \equiv 3 \pmod 4$$

$$ \Rightarrow y_0^2+1 \equiv 0 \pmod p \Rightarrow y_0^2 \equiv -1 \pmod p$$

The equation $Y^2 \equiv -1 \pmod p$ has a solution $\Leftrightarrow \left( \frac{-1}{p} \right)=1 \Leftrightarrow p \equiv 1 \pmod 4$

Therefore:

$$y_0^2 \equiv -1 \pmod p \text{ has no solution}.$$If we would conclude from this relation: $ \left ( \frac{-1}{p} \right )=1$ that $p \equiv 3 \pmod 4$, would we conclude that the diophantine equation has at least one solution? (Thinking)
 
Mathematics news on Phys.org
That is not necessary, no. Even if $-1$ was a quadratic residue modulo $p$, the equation would have been only true modulo $p$. (For example, $2 = 5$ modulo $3$, but $2 \neq 5$ in general :p)
 
Last edited:
Not entirely on topic, but I'll add another proof I am familiar with.

Assume that $x$ is even. Then $x^3 = 0 \pmod{8}$. Thus $y^2 = x^3 + 7 = 7 = -1 \pmod{8}$, but this is impossible, hence $x$ is odd. Thus $x$ is either $1$ or $3$ modulo $4$.

$$y^2 + 1 = x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$

$y^2 + 1$ is not divisible by any prime $3 \bmod 4$, thus the right hand side is also not divisible by any prime $3 \bmod 4$. In particular, $x + 2$ is not $3 \bmod 4$ (this is because any $3 \bmod 4$ integer must have at least one $3 \bmod 4$ prime factor) and thus is $1 \bmod 4$. Hence $x = 3 \mod 4$ in which case $x^2 - 2x + 4 = 9 - 6 + 4 = 7 = 3 \pmod{4}$ which implies there is a prime factor $p = 3 \pmod{4}$ dividing $x^2 - 2x + 4$, a contradiction $\blacksquare$
 
mathbalarka said:
Not entirely on topic, but I'll add another proof I am familiar with.

Assume that $x$ is even. Then $x^3 = 0 \pmod{8}$. Thus $y^2 = x^3 + 7 = 7 = -1 \pmod{8}$, but this is impossible, hence $x$ is odd. Thus $x$ is either $1$ or $3$ modulo $4$.

$$y^2 + 1 = x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$

$y^2 + 1$ is not divisible by any prime $3 \bmod 4$, thus the right hand side is also not divisible by any prime $3 \bmod 4$. In particular, $x + 2$ is not $3 \bmod 4$ (this is because any $3 \bmod 4$ integer must have at least one $3 \bmod 4$ prime factor) and thus is $1 \bmod 4$. Hence $x = 3 \mod 4$ in which case $x^2 - 2x + 4 = 9 - 6 + 4 = 7 = 3 \pmod{4}$ which implies there is a prime factor $p = 3 \pmod{4}$ dividing $x^2 - 2x + 4$, a contradiction $\blacksquare$

We know that $x$ is odd, so it is of the form $2k+1$.

Therefore:

$$x+2=2k+1+2=2k+3$$

  • $k=2m+1: x+2=2(2m+1)+3=4m+5 \equiv 1 \pmod 4 \Rightarrow x \equiv 3 \pmod 4$
  • $ k=2m: x+2=4m+3 \equiv 3 \pmod 4 \Rightarrow x \equiv 1 \pmod 4$

How do we conclude that $x \equiv 3 \pmod 4$ ? (Thinking)
 
evinda said:
How do we conclude that $x \equiv 3 \pmod 4$ ?(Thinking)

Right, so you have (correctly (Yes)) concluded that $x$ is either $1$ or $3$ modulo $4$.

Now, assume $x = 1 \pmod 4$. Then $x + 2 = 3 \pmod 4$. In that case, $y^2 + 1$ is divisible by some number $3 \pmod 4$. The fact I have used for contradiction is

Claim : Any integer of the form $a^2 + b^2$ is not divisible by any integer $n$ of the form 3 mod 4.

Can you try to prove this claim?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top