Year 7 & 8 mathematics puzzle solve (1−1/2)(1−1/3)....(1−1/2017)=x

Click For Summary
SUMMARY

The mathematical expression $$\left({1-\frac{1}{2}}\right)\left({1-\frac{1}{3}}\right)...\left({1-\frac{1}{2017}}\right)=x$$ can be simplified using basic algebraic principles taught in Year 7 and 8 mathematics. The solution involves understanding the concept of products and fractions, leading to the conclusion that the value of x is equal to $$\frac{2016}{2017}$$. This problem is suitable for students at the Year 7 and 8 level, emphasizing foundational mathematical skills.

PREREQUISITES
  • Understanding of basic algebraic operations
  • Familiarity with fractions and their simplification
  • Knowledge of mathematical products
  • Ability to apply basic mathematical principles in problem-solving
NEXT STEPS
  • Explore the concept of mathematical induction for proving identities
  • Learn about the properties of fractions and their applications
  • Study the fundamentals of algebraic expressions and simplifications
  • Investigate the use of sequences and series in mathematics
USEFUL FOR

This discussion is beneficial for Year 7 and 8 students, mathematics educators, and anyone interested in foundational algebraic concepts and problem-solving techniques.

bio
Messages
12
Reaction score
0
This will be fairly easy to do, even in the eyes of a Year 7

Find x when $$\left({1-\frac{1}{2}}\right)\left({1-\frac{1}{3}}\right)...\left({1-\frac{1}{2017}}\right)=x$$

Remember: Year 7 and 8 maths only!
 
Last edited:
Mathematics news on Phys.org
My solution (to the problem originally posted):

I don't know where $x$ fits into this, however, by inspection, I find:

$$S=\sum_{k=1}^{2016}\left(\frac{k}{k+1}\right)=2017-H_{2017}$$

Where $H_n$ is the $n$th harmonic number.

According to W|A, the actual value of the given sum is:

$$S=\frac{822115465324282561724802258557532366310699004754387291526159866017130476270647843871743685992495701228849000100287286632619820316667316718584369564259306482609128747444592930143458010597849621845241330694119277917820930378101615543893613935369526817385751154419464839762367230184496904994441405722157454834997752398782223977479947678657020025523575193386812429482328568636994034136498298967034748318886404333894953886987231864341318926681248859492981091379567361347779648984940411352335500719085073786842132187244436822275817441998400895963445964438102195433232177881021740273056977601662086595538286853043320690576343454001212039307920418455812365948698036852323924962865025990303576841043964865867962487830471679713735545302265107731707712379650082724108349916371588495856107821003528476225549143904540772209314928517912601766945839363224442605754719911769816595440935014794609}{409254318735421372874527513713809849729135059223982154744686910391244881751394287792064717538513501909093551073331105901230174815690870254022597927796335026690598911658288578341662007257908728685152761650582748164977706081859581162971618587292791162956045102947117094844113969603097500003652004069652979380609518121519013531548885927853149410724755210783428395488365803795111980933624569399933400969497574721790682373349842950967442946949750794524393431836515674176033082971320894446597931131516693687546474012255765758283940350898733234638365606173236127739051742487602390618454018049479926800452950875570239516276819871570674576851400791100528044895551810310590444123249637327298475483510172556378112704981184569797419716363712359628331775989191307093772005846389088398901747521145065831525586976740612039273283797156150977660434534795320274675464655132985044254833228160000}$$

The decimal approximation is:

$$S\approx2008.813169924717623749873055650937838644716733197521974209$$
 
Re: Year 7 & 8 mathematics puzzle

This is my solution:
We can deduce that the pattern goes like $$\frac{1}{2},\frac{2}{3}...\frac{2016}{2017}$$ so, by cancelling, we get:$$\frac{1}{\cancel 2} \cdot \frac{\cancel 2}{\cancel 3} \cdot ... \frac{\cancel{2016}}{2017}$$

So the only remaining fraction is:

$$\frac{1}{2017}$$

- - - Updated - - -

Also, sorry about the coding problem. I can't manage to only make the code into italics. If anyone can edit it, please do
 
Last edited by a moderator:
This makes me wonder if my school ripped me off... I do not recall doing this sort of thing at year 7 and 8 level xD. No wonder I'm such a dunce :p.
 
If anyone can help me with my other questions, please do. Thanks ;)
 
Re: Year 7 & 8 mathematics puzzle

bio said:
This is my solution:
We can deduce that the pattern goes like $$\frac{1}{2},\frac{2}{3}...\frac{2016}{2017}$$ so, by cancelling, we get:$$\frac{1}{\cancel 2} \cdot \frac{\cancel 2}{\cancel 3} \cdot ... \frac{\cancel{2016}}{2017}$$

So the only remaining fraction is:

$$\frac{1}{2017}$$
Also, sorry about the coding problem. I can't manage to only make the code into italics. If anyone can edit it, please do
What are the axiom(s) or theorem(s) and definition(s) that are used in the above proof that one learns in years 7 and 8 in mathematics ??
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K