MHB Year 7 & 8 mathematics puzzle solve (1−1/2)(1−1/3)....(1−1/2017)=x

Click For Summary
The discussion revolves around solving the mathematical expression (1−1/2)(1−1/3)...(1−1/2017) and finding its value, x, suitable for Year 7 and 8 students. Participants share their solutions and express confusion about the complexity of the problem relative to their educational experience. There is a request for clarification on the axioms, theorems, and definitions applicable to the proof used in solving the expression. The conversation highlights the perceived difficulty of the problem for the intended age group. Overall, the thread emphasizes the need for accessible explanations of mathematical concepts for younger students.
bio
Messages
12
Reaction score
0
This will be fairly easy to do, even in the eyes of a Year 7

Find x when $$\left({1-\frac{1}{2}}\right)\left({1-\frac{1}{3}}\right)...\left({1-\frac{1}{2017}}\right)=x$$

Remember: Year 7 and 8 maths only!
 
Last edited:
Mathematics news on Phys.org
My solution (to the problem originally posted):

I don't know where $x$ fits into this, however, by inspection, I find:

$$S=\sum_{k=1}^{2016}\left(\frac{k}{k+1}\right)=2017-H_{2017}$$

Where $H_n$ is the $n$th harmonic number.

According to W|A, the actual value of the given sum is:

$$S=\frac{822115465324282561724802258557532366310699004754387291526159866017130476270647843871743685992495701228849000100287286632619820316667316718584369564259306482609128747444592930143458010597849621845241330694119277917820930378101615543893613935369526817385751154419464839762367230184496904994441405722157454834997752398782223977479947678657020025523575193386812429482328568636994034136498298967034748318886404333894953886987231864341318926681248859492981091379567361347779648984940411352335500719085073786842132187244436822275817441998400895963445964438102195433232177881021740273056977601662086595538286853043320690576343454001212039307920418455812365948698036852323924962865025990303576841043964865867962487830471679713735545302265107731707712379650082724108349916371588495856107821003528476225549143904540772209314928517912601766945839363224442605754719911769816595440935014794609}{409254318735421372874527513713809849729135059223982154744686910391244881751394287792064717538513501909093551073331105901230174815690870254022597927796335026690598911658288578341662007257908728685152761650582748164977706081859581162971618587292791162956045102947117094844113969603097500003652004069652979380609518121519013531548885927853149410724755210783428395488365803795111980933624569399933400969497574721790682373349842950967442946949750794524393431836515674176033082971320894446597931131516693687546474012255765758283940350898733234638365606173236127739051742487602390618454018049479926800452950875570239516276819871570674576851400791100528044895551810310590444123249637327298475483510172556378112704981184569797419716363712359628331775989191307093772005846389088398901747521145065831525586976740612039273283797156150977660434534795320274675464655132985044254833228160000}$$

The decimal approximation is:

$$S\approx2008.813169924717623749873055650937838644716733197521974209$$
 
Re: Year 7 & 8 mathematics puzzle

This is my solution:
We can deduce that the pattern goes like $$\frac{1}{2},\frac{2}{3}...\frac{2016}{2017}$$ so, by cancelling, we get:$$\frac{1}{\cancel 2} \cdot \frac{\cancel 2}{\cancel 3} \cdot ... \frac{\cancel{2016}}{2017}$$

So the only remaining fraction is:

$$\frac{1}{2017}$$

- - - Updated - - -

Also, sorry about the coding problem. I can't manage to only make the code into italics. If anyone can edit it, please do
 
Last edited by a moderator:
This makes me wonder if my school ripped me off... I do not recall doing this sort of thing at year 7 and 8 level xD. No wonder I'm such a dunce :p.
 
If anyone can help me with my other questions, please do. Thanks ;)
 
Re: Year 7 & 8 mathematics puzzle

bio said:
This is my solution:
We can deduce that the pattern goes like $$\frac{1}{2},\frac{2}{3}...\frac{2016}{2017}$$ so, by cancelling, we get:$$\frac{1}{\cancel 2} \cdot \frac{\cancel 2}{\cancel 3} \cdot ... \frac{\cancel{2016}}{2017}$$

So the only remaining fraction is:

$$\frac{1}{2017}$$
Also, sorry about the coding problem. I can't manage to only make the code into italics. If anyone can edit it, please do
What are the axiom(s) or theorem(s) and definition(s) that are used in the above proof that one learns in years 7 and 8 in mathematics ??
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K