Year 7 & 8 mathematics puzzle solve (1−1/2)(1−1/3)....(1−1/2017)=x

Click For Summary

Discussion Overview

The discussion revolves around solving the mathematical expression $$\left({1-\frac{1}{2}}\right)\left({1-\frac{1}{3}}\right)...\left({1-\frac{1}{2017}}\right)=x$$, framed as a puzzle appropriate for Year 7 and 8 mathematics. Participants share their approaches and solutions while reflecting on the educational context of the problem.

Discussion Character

  • Homework-related, Exploratory, Technical explanation

Main Points Raised

  • One participant expresses confidence that the problem is easy for Year 7 students.
  • Several participants share their solutions, although specific methods are not detailed in the excerpts.
  • Another participant questions the appropriateness of the problem for Year 7 and 8 students, suggesting a lack of exposure to similar problems in their education.
  • A participant requests assistance with additional questions, indicating a broader context of learning.
  • There is a request for clarification on the axioms, theorems, and definitions relevant to the proof, highlighting a focus on foundational mathematical concepts.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the difficulty level of the problem for Year 7 and 8 students, with some expressing confidence and others questioning its appropriateness. The discussion remains unresolved regarding the specific solutions and methods employed.

Contextual Notes

Participants reference coding issues related to formatting their solutions, indicating potential limitations in their ability to present mathematical expressions clearly.

Who May Find This Useful

Students in Year 7 and 8 mathematics, educators looking for age-appropriate mathematical puzzles, and individuals interested in foundational mathematical concepts and problem-solving approaches.

bio
Messages
12
Reaction score
0
This will be fairly easy to do, even in the eyes of a Year 7

Find x when $$\left({1-\frac{1}{2}}\right)\left({1-\frac{1}{3}}\right)...\left({1-\frac{1}{2017}}\right)=x$$

Remember: Year 7 and 8 maths only!
 
Last edited:
Mathematics news on Phys.org
My solution (to the problem originally posted):

I don't know where $x$ fits into this, however, by inspection, I find:

$$S=\sum_{k=1}^{2016}\left(\frac{k}{k+1}\right)=2017-H_{2017}$$

Where $H_n$ is the $n$th harmonic number.

According to W|A, the actual value of the given sum is:

$$S=\frac{822115465324282561724802258557532366310699004754387291526159866017130476270647843871743685992495701228849000100287286632619820316667316718584369564259306482609128747444592930143458010597849621845241330694119277917820930378101615543893613935369526817385751154419464839762367230184496904994441405722157454834997752398782223977479947678657020025523575193386812429482328568636994034136498298967034748318886404333894953886987231864341318926681248859492981091379567361347779648984940411352335500719085073786842132187244436822275817441998400895963445964438102195433232177881021740273056977601662086595538286853043320690576343454001212039307920418455812365948698036852323924962865025990303576841043964865867962487830471679713735545302265107731707712379650082724108349916371588495856107821003528476225549143904540772209314928517912601766945839363224442605754719911769816595440935014794609}{409254318735421372874527513713809849729135059223982154744686910391244881751394287792064717538513501909093551073331105901230174815690870254022597927796335026690598911658288578341662007257908728685152761650582748164977706081859581162971618587292791162956045102947117094844113969603097500003652004069652979380609518121519013531548885927853149410724755210783428395488365803795111980933624569399933400969497574721790682373349842950967442946949750794524393431836515674176033082971320894446597931131516693687546474012255765758283940350898733234638365606173236127739051742487602390618454018049479926800452950875570239516276819871570674576851400791100528044895551810310590444123249637327298475483510172556378112704981184569797419716363712359628331775989191307093772005846389088398901747521145065831525586976740612039273283797156150977660434534795320274675464655132985044254833228160000}$$

The decimal approximation is:

$$S\approx2008.813169924717623749873055650937838644716733197521974209$$
 
Re: Year 7 & 8 mathematics puzzle

This is my solution:
We can deduce that the pattern goes like $$\frac{1}{2},\frac{2}{3}...\frac{2016}{2017}$$ so, by cancelling, we get:$$\frac{1}{\cancel 2} \cdot \frac{\cancel 2}{\cancel 3} \cdot ... \frac{\cancel{2016}}{2017}$$

So the only remaining fraction is:

$$\frac{1}{2017}$$

- - - Updated - - -

Also, sorry about the coding problem. I can't manage to only make the code into italics. If anyone can edit it, please do
 
Last edited by a moderator:
This makes me wonder if my school ripped me off... I do not recall doing this sort of thing at year 7 and 8 level xD. No wonder I'm such a dunce :p.
 
If anyone can help me with my other questions, please do. Thanks ;)
 
Re: Year 7 & 8 mathematics puzzle

bio said:
This is my solution:
We can deduce that the pattern goes like $$\frac{1}{2},\frac{2}{3}...\frac{2016}{2017}$$ so, by cancelling, we get:$$\frac{1}{\cancel 2} \cdot \frac{\cancel 2}{\cancel 3} \cdot ... \frac{\cancel{2016}}{2017}$$

So the only remaining fraction is:

$$\frac{1}{2017}$$
Also, sorry about the coding problem. I can't manage to only make the code into italics. If anyone can edit it, please do
What are the axiom(s) or theorem(s) and definition(s) that are used in the above proof that one learns in years 7 and 8 in mathematics ??
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
3
Views
2K