MHB Yes, the correct solution would be to subtract (x/2) from both sides, not 2x.

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Quadratic
Click For Summary
The discussion centers on solving the quadratic inequality 2/x < x/2. The correct approach involves subtracting x/2 from both sides rather than multiplying, leading to the expression (4 - x^2)/(2x) < 0. This reveals critical values at -2, 0, and 2, resulting in four intervals for testing. The valid solution intervals are found to be (-2, 0) and (2, infinity), while the endpoints -2 and 2 are excluded from the solution. The conclusion emphasizes the importance of the correct algebraic manipulation in solving the inequality.
mathdad
Messages
1,280
Reaction score
0
Solve the quadratic inequality.

2/x < x/2

Multiply both sides by 2x.

(2x)*(2/x) < (2x)(x/2)

4 < x^2

4 = x^2

sqrt{4} = sqrt{x^2}

-2 = x

2 = x

Our end points are -2 and 2.

<------(-2)----------(2)------->

For (-infinity, -2), let x = -3. In this interval, we get true.

For (-2, 2), let x = 0. In this interval, we get false.

For (2, infinity), let x = 3. In this interval, we get true.

Test the end points.

Let x = -2 and x = 2.

At x = -2, we get false.

At x = 2, we get false.

We exclude the test points.

Solution: (-infinity, -2) U (2, infinity)

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
Solve the quadratic inequality.

2/x < x/2

Multiply both sides by 2x.

You are assuming x is positive when you do that. A better step is to subtract x/2 from both sides:

$$\frac{2}{x}-\frac{x}{2}<0$$

Combine terms:

$$\frac{4-x^2}{2x}<0$$

$$\frac{(2+x)(2-x)}{2x}<0$$

Now we see we have 3 critical values which give us 4 intervals:

$$(-\infty,-2)$$ Test value: x = -3: expression is (-)(+)/(-) = + not part of solution. Other intervals will alternate...

$$(-2,0)$$ is part of solution.

$$(0,2)$$ not part of solution.

$$(2,\infty)$$ is part of solution.

And so the solution is:

$$(-2,0)\,\cup\,(2,\infty)$$
 
You meant to say subtract (x/2) from both sides not 2x.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K