MHB Yes, the correct solution would be to subtract (x/2) from both sides, not 2x.

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Quadratic
AI Thread Summary
The discussion centers on solving the quadratic inequality 2/x < x/2. The correct approach involves subtracting x/2 from both sides rather than multiplying, leading to the expression (4 - x^2)/(2x) < 0. This reveals critical values at -2, 0, and 2, resulting in four intervals for testing. The valid solution intervals are found to be (-2, 0) and (2, infinity), while the endpoints -2 and 2 are excluded from the solution. The conclusion emphasizes the importance of the correct algebraic manipulation in solving the inequality.
mathdad
Messages
1,280
Reaction score
0
Solve the quadratic inequality.

2/x < x/2

Multiply both sides by 2x.

(2x)*(2/x) < (2x)(x/2)

4 < x^2

4 = x^2

sqrt{4} = sqrt{x^2}

-2 = x

2 = x

Our end points are -2 and 2.

<------(-2)----------(2)------->

For (-infinity, -2), let x = -3. In this interval, we get true.

For (-2, 2), let x = 0. In this interval, we get false.

For (2, infinity), let x = 3. In this interval, we get true.

Test the end points.

Let x = -2 and x = 2.

At x = -2, we get false.

At x = 2, we get false.

We exclude the test points.

Solution: (-infinity, -2) U (2, infinity)

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
Solve the quadratic inequality.

2/x < x/2

Multiply both sides by 2x.

You are assuming x is positive when you do that. A better step is to subtract x/2 from both sides:

$$\frac{2}{x}-\frac{x}{2}<0$$

Combine terms:

$$\frac{4-x^2}{2x}<0$$

$$\frac{(2+x)(2-x)}{2x}<0$$

Now we see we have 3 critical values which give us 4 intervals:

$$(-\infty,-2)$$ Test value: x = -3: expression is (-)(+)/(-) = + not part of solution. Other intervals will alternate...

$$(-2,0)$$ is part of solution.

$$(0,2)$$ not part of solution.

$$(2,\infty)$$ is part of solution.

And so the solution is:

$$(-2,0)\,\cup\,(2,\infty)$$
 
You meant to say subtract (x/2) from both sides not 2x.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top