Good points. Several interwoven issues are involved and my responses could be fairly long, but I will try to keep it as short as possible.
The concept clearly does not work if the supplemental particles are coupled to the traditional particles (within the standard model – exclusive of gravity). Two non-interacting (except for gravity) sectors are envisioned, so unitarity within the SM should be OK. Interaction probabilities for the SM traditional particles remain just as they are, positive and of identical magnitudes.
If by probability, you mean, as in NRQM, the square of the absolute value of the state wave function integrated over space (norms), the supplementals have alternating positive and negative norms, as the particle number of the state increases, i.e., an indefinite metric in Fock space. I address, and believe resolve, this in my second paper on the subject (available at
www.quantumfieldtheory.info link near bottom of home page).
If by probability, you mean, as in RQM and QFT, the relation derived from manipulating the relativistic wave equation and its conjugate (or equivalently from Noether’s theorem), then the antiparticle expressions for probability of traditional SM antiparticles are negative anyway. This led to interpretation of the probability density as charge density. Exactly parallel reasoning holds for supplemental particles. Relativistic “probability” (charge, really) density is opposite sign for supplemental particles vs supplemental anti-particles.
Yes, I agree normal ordering has advantages when it comes to streamlining the theory development, for tadpoles and elsewhere. But I am not aware of anyone using renormalization to remove the infinite (or at least ginormous) half quanta vacuum contributions that one gets without the ad hoc introduction of normal ordering (that happens to violate the basic commutation principle upon which the entire theory is based). Lots and lots of people talk about why this disagrees with empirical observation (by a factor of 10^120 or so). A number of papers have been published on possible solutions.
I submit the supplemental solution approach is the simplest mathematically of all of them. The troublesome half quanta simply drop out straightforwardly by including all of the mathematically possible solutions to the wave equation in the analysis.
What does this all mean physically? I’m working on it. As Dirac said,
“ .. it [is] an easier matter to discover the mathematical formalism needed for a fundamental physical theory than its interpretation … with the interpretation most unexpected things may turn up.”