ZFC and the Axiom of Foundation

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Axiom Zfc
Click For Summary
SUMMARY

The discussion centers on the Axiom of Foundation within Zermelo-Fraenkel set theory (ZFC), as presented in Micheal Searcoid's "Elements of Abstract Analysis." Participants clarify that the Axiom of Foundation asserts that every non-empty set has an element that is disjoint from it, preventing sets from containing themselves. An example provided illustrates that if set A contains set a, then a cannot be an element of itself, reinforcing the principle of well-foundedness. The conversation also addresses common confusions between elements and sets, specifically distinguishing between the number 1 and the set containing 1.

PREREQUISITES
  • Understanding of Zermelo-Fraenkel set theory (ZFC)
  • Familiarity with set notation and operations
  • Basic knowledge of mathematical logic and predicates
  • Concept of well-foundedness in set theory
NEXT STEPS
  • Study the implications of the Axiom of Foundation in ZFC
  • Explore the concept of well-founded sets and their properties
  • Learn about Russell's Paradox and its relation to set theory
  • Investigate the differences between elements and sets in mathematical contexts
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in foundational concepts of set theory will benefit from this discussion.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Micheal Searcoid's book: Elements of Abstract Analysis ( Springer Undergraduate Mathematics Series) ...

I am currently focussed on Searcoid's treatment of ZFC in Chapter 1: Sets ...

I am struggling to attain a full understanding of the Axiom of Foundation which reads as shown below:https://www.physicsforums.com/attachments/5072Can someone explain this Axiom and give some simple examples ...

I am perplexed by my own example ... as follows ...

Consider the set $$a = \{ 1, 2, 3 \}$$

[Note that $$1, 2, 3$$ are sets - previous post by Deveno ... ]

Now $$1 \cup a = 1 $$

and $$2 \cup a = 2$$

and $$3 \cup a = 3$$

... ? ... what is the member of a which is disjoint from a ...

Can someone clarify this issue and explain how the Axiom works ...

Hope someone can help ..

Peter
 
Physics news on Phys.org
Let's look at a very simple set:

$A = \{a\}$.

Since $a \in A$, the axiom applies, because $A$ is non-empty. So we have an element of $A$ which is disjoint from $A$. Well, the only element to be found is $a$. So:

$a \cap A = \emptyset$. Let's write this a bit differently:

$a \cap \{a\} = \emptyset$.

I claim this means $a \not\in a$.

For suppose we had $a \in a$. Since $a \in A$, this would mean $a$ and $A$ have a common element, $a$. But this violates:

$a \cap A = \emptyset$.

The purpose of this, is to establish that there is no such set as:

$S = \{S,\{S,\{S,\dots,\}\}\}$

in other words "the buck stops somewhere" (this principle is called "foundation" or "well-founded-ness").

It establishes that $a$ and $\{a\}$ are always *distinct* sets. This distinction is often glossed over in analysis, where the real number $x$, and the singleton subset $\{x\}$ are often conflated (by such vague language such as "consider the point $x$").

Interestingly enough, if $\phi(x)$ is the predicate; $x \not\in x$, we see that $\phi(x)$ is true for any non-empty set $x$.

So if the collection of all sets was a set, it would be a Russell set, whose very existence negates itself. This contradiction shows the collection of all sets is not a set.

As for your example, you are confusing $1$ with $\{1\}$. For example:

$\{1\} \cap a = \{1\}$, but:

$1 \cap a = \emptyset$ (since $0 \not\in a$).
 
Deveno said:
Let's look at a very simple set:

$A = \{a\}$.

Since $a \in A$, the axiom applies, because $A$ is non-empty. So we have an element of $A$ which is disjoint from $A$. Well, the only element to be found is $a$. So:

$a \cap A = \emptyset$. Let's write this a bit differently:

$a \cap \{a\} = \emptyset$.

I claim this means $a \not\in a$.

For suppose we had $a \in a$. Since $a \in A$, this would mean $a$ and $A$ have a common element, $a$. But this violates:

$a \cap A = \emptyset$.

The purpose of this, is to establish that there is no such set as:

$S = \{S,\{S,\{S,\dots,\}\}\}$

in other words "the buck stops somewhere" (this principle is called "foundation" or "well-founded-ness").

It establishes that $a$ and $\{a\}$ are always *distinct* sets. This distinction is often glossed over in analysis, where the real number $x$, and the singleton subset $\{x\}$ are often conflated (by such vague language such as "consider the point $x$").

Interestingly enough, if $\phi(x)$ is the predicate; $x \not\in x$, we see that $\phi(x)$ is true for any non-empty set $x$.

So if the collection of all sets was a set, it would be a Russell set, whose very existence negates itself. This contradiction shows the collection of all sets is not a set.

As for your example, you are confusing $1$ with $\{1\}$. For example:

$\{1\} \cap a = \{1\}$, but:

$1 \cap a = \emptyset$ (since $0 \not\in a$).
Hi Deveno ... thanks for the help ...

Still reflecting on your post ...

But just one quick question ... ...

... you write ...

" ... As for your example, you are confusing $1$ with $\{1\}$. For example:

$\{1\} \cap a = \{1\}$, but:

$1 \cap a = \emptyset$ (since $0 \not\in a$). ..."

I do not follow your reasoning in arguing that $1 \cap a = \emptyset$ because $0 \not\in a$ ... can you explain this further ... how exactly does the fact that $0 \not\in a$ imply that $1 \cap a = \emptyset$ ...

Hope you can clarify and explain this issue ...

Peter
 
As a set, $1 = \{0\}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
14
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K