View Single Post
VinnyCee
#1
Jan22-07, 07:06 PM
P: 492
1. The problem statement, all variables and given/known data

Determine voltages [itex]V_1[/itex] through [itex]V_3[/itex] in the circuit below.




2. Relevant equations

KCL, V = iR


3. The attempt at a solution

So I added some variables to represent currents and a super-node. The variables are in red and the super-node in light-blue.



[tex]V_A\,=\,V_2[/tex]

[tex]V_3\,=\,13\,V[/tex]

[tex]I_1\,=\,\frac{V_1\,-\,V_3}{\frac{1}{2}\Omega}\,=\,2\,V_1\,-\,2\,V_3[/tex]

[tex]I_2\,=\,\frac{V_1\,-\,0}{1\Omega}\,=\,V_1[/tex]

[tex]I_3\,=\,\frac{V_2\,-\,0}{\frac{1}{4}\Omega}\,=\,4\,V_2[/tex]

[tex]I_4\,=\,\frac{V_2\,-\,V_3}{\frac{1}{8}\Omega}\,=\,8\,V_2\,-\,8\,V_3[/tex]

Now I use KCL at the super-node:

[tex]I_1\,+\,I_2\,+\,I_3\,+I_4\,=\,2\,A[/tex]

[tex](2\,V_1\,-\,2\,V_3)\,+\,(V_1)\,+\,(4\,V_2)\,+\,(8\,V_2\,-\,8\,V_3)\,=\,2\,A[/tex]

[tex]3\,V_1\,+\,12\,V_2\,-\,10\,V_3\,=\,2\,A[/tex]

[tex]3\,V_1\,+\,12\,V_2\,-\,10(13\,V)\,=\,2\,A[/tex]

[tex]3\,V_1\,+\,12\,V_2\,=\,132[/tex]

And get the voltage equation from inside the super-node:

[tex]V_1\,-\,V_2\,=\,2\,V_A[/tex]

[tex]V_1\,-\,V_2\,-\,2\,V_2\,= \,0[/tex]

[tex]V_1\,-\,3\,V_2\,=\,0[/tex]

Now put into a matrix and rref to get [itex]V_1[/itex] and [itex]V_2[/itex]:

[tex]\left[\begin{array}{ccc}3&12&132\\1&-3&0\end{array}\right]\,\,\longrightarrow\,\,\left[\begin{array}{ccc}1&0&\frac{132}{7}\\0&1&\frac{44}{7}\end{array}\right][/tex]

So I get these for [itex]V_1[/itex] through [itex]V_3[/itex]:

[tex]V_1\,=\,\frac{132}{7}\,V\,\approx\,18.86\,V[/tex]

[tex]V_2\,=\,\frac{44}{7}\,V\,\approx\,6.286\,V[/tex]

[tex]V_3\,=\,13\,V[/tex]

Does this look right?
Phys.Org News Partner Science news on Phys.org
Climate change increases risk of crop slowdown in next 20 years
Researcher part of team studying ways to better predict intensity of hurricanes
New molecule puts scientists a step closer to understanding hydrogen storage