View Single Post
VinnyCee
#1
Jan22-07, 07:06 PM
P: 492
1. The problem statement, all variables and given/known data

Determine voltages [itex]V_1[/itex] through [itex]V_3[/itex] in the circuit below.




2. Relevant equations

KCL, V = iR


3. The attempt at a solution

So I added some variables to represent currents and a super-node. The variables are in red and the super-node in light-blue.



[tex]V_A\,=\,V_2[/tex]

[tex]V_3\,=\,13\,V[/tex]

[tex]I_1\,=\,\frac{V_1\,-\,V_3}{\frac{1}{2}\Omega}\,=\,2\,V_1\,-\,2\,V_3[/tex]

[tex]I_2\,=\,\frac{V_1\,-\,0}{1\Omega}\,=\,V_1[/tex]

[tex]I_3\,=\,\frac{V_2\,-\,0}{\frac{1}{4}\Omega}\,=\,4\,V_2[/tex]

[tex]I_4\,=\,\frac{V_2\,-\,V_3}{\frac{1}{8}\Omega}\,=\,8\,V_2\,-\,8\,V_3[/tex]

Now I use KCL at the super-node:

[tex]I_1\,+\,I_2\,+\,I_3\,+I_4\,=\,2\,A[/tex]

[tex](2\,V_1\,-\,2\,V_3)\,+\,(V_1)\,+\,(4\,V_2)\,+\,(8\,V_2\,-\,8\,V_3)\,=\,2\,A[/tex]

[tex]3\,V_1\,+\,12\,V_2\,-\,10\,V_3\,=\,2\,A[/tex]

[tex]3\,V_1\,+\,12\,V_2\,-\,10(13\,V)\,=\,2\,A[/tex]

[tex]3\,V_1\,+\,12\,V_2\,=\,132[/tex]

And get the voltage equation from inside the super-node:

[tex]V_1\,-\,V_2\,=\,2\,V_A[/tex]

[tex]V_1\,-\,V_2\,-\,2\,V_2\,= \,0[/tex]

[tex]V_1\,-\,3\,V_2\,=\,0[/tex]

Now put into a matrix and rref to get [itex]V_1[/itex] and [itex]V_2[/itex]:

[tex]\left[\begin{array}{ccc}3&12&132\\1&-3&0\end{array}\right]\,\,\longrightarrow\,\,\left[\begin{array}{ccc}1&0&\frac{132}{7}\\0&1&\frac{44}{7}\end{array}\right][/tex]

So I get these for [itex]V_1[/itex] through [itex]V_3[/itex]:

[tex]V_1\,=\,\frac{132}{7}\,V\,\approx\,18.86\,V[/tex]

[tex]V_2\,=\,\frac{44}{7}\,V\,\approx\,6.286\,V[/tex]

[tex]V_3\,=\,13\,V[/tex]

Does this look right?
Phys.Org News Partner Science news on Phys.org
'Smart material' chin strap harvests energy from chewing
King Richard III died painfully on battlefield
Capturing ancient Maya sites from both a rat's and a 'bat's eye view'