cylinder rolling down an inclined plane


by PhMichael
Tags: cylinder, inclined, plane, rolling
PhMichael
PhMichael is offline
#1
Sep6-10, 04:24 PM
P: 125
1. The problem statement, all variables and given/known data

So I have this standard problem of a cylinder rolling down an inclined plane, however, this time the plane itself is free to slide on the ground. I need to find the acceleration of that cylinder relative to the plane.

2. The attempt at a solution



V / A - the velocity / acceleration of the plane relative to the ground.
v / a - the velocity / acceleration of the cylinder relative to the plane.

The velocity of the cylinder relative to the ground is:

[tex] \vec{u}=\vec{v}+\vec{V}=(vcos \beta -V) \hat{x} - (vsin \beta) \hat{y} [/tex]

Momentum is conserved conserved in the [tex]\hat{x}[/tex] direction so that:

[tex] 0=-MV+m(v cos \beta -V) \to V=\frac{m}{M+m} v cos \beta [/tex]

so the acceleration of the plane relative to the ground is:

[tex] A=\frac{dV}{dt}=\frac{m}{m+M}a cos \beta [/tex]

About point P, we have:

[tex] \vec{\tau}_{P}=mR(g sin \beta + A cos \beta) \hat{z} [/tex]

[tex] I_{P}\vec{\alpha}=(0.5MR^{2}+MR^{2})\vec{\alpha}=1.5MR^{2} \frac{a}{R}\hat{z} [/tex]

Equating the last two equations while using the equation of A yields:

[tex]a=gsin\beta\left [ \frac{3}{2}-\left ( \frac{m}{m+M} \right )cos^{2}\beta \right ] [/tex]

This answer is correct, however, I'm not sure whether what I did is kosher; to be more specific, is linear momentum conserved along the [tex]\hat{x}[/tex] direction? are fictitious forces, like the one we have here on the cylinder as a result of the plane's acceleration, not treated as real forces so that eventhough they exist, we may still use the conservation of momentum principle?
Phys.Org News Partner Science news on Phys.org
Lemurs match scent of a friend to sound of her voice
Repeated self-healing now possible in composite materials
'Heartbleed' fix may slow Web performance
hikaru1221
hikaru1221 is offline
#2
Sep7-10, 07:29 AM
P: 802
Quote Quote by PhMichael View Post
to be more specific, is linear momentum conserved along the [tex]\hat{x}[/tex] direction? are fictitious forces, like the one we have here on the cylinder as a result of the plane's acceleration, not treated as real forces so that eventhough they exist, we may still use the conservation of momentum principle?
It depends on the reference frame and the system you consider. Whenever there is no external force, the linear momentum is conserved. Remember how to derive the law from F=dp/dt?

In the frame of the ground, if you consider the system of the wedge & the cylinder, the momentum of the system is conserved. With the same system, but in the frame of the wedge, there is fictitious force, i.e. F = dp/dt is not zero, the momentum is not conserved.
Mindscrape
Mindscrape is offline
#3
Sep7-10, 07:45 AM
P: 1,877
Looks good to me! Now if you truly wanted to make this problem difficult you could add in friction, inertia effects, and some good old lagrange multipliers. :p

Also, if you know of Lagrangian dynamics then it could be fun to solve the problem in an alternate way, which I might do just for fun.


Register to reply

Related Discussions
Sphere rolling down an inclined plane Classical Physics 1
cylinder on inclined plane Introductory Physics Homework 1
ball rolling down an inclined plane Introductory Physics Homework 1
Rolling on an inclined plane Introductory Physics Homework 2
cylinder on a frictionless inclined plane Classical Physics 3