
#1
Sep1905, 01:37 PM

P: 19

I don't know how to solve x for things like e^x=20.
The problem I have to solve is x^3+e^(2x)+8=0 Can anyone help, please? 



#2
Sep1905, 02:14 PM

P: 107

have you learned logarithms?
what is the natural log of e^x? 



#3
Sep1905, 02:21 PM

Sci Advisor
HW Helper
P: 3,149





#4
Sep1905, 02:33 PM

Sci Advisor
HW Helper
P: 1,327

How do I solve exponentials with base e?
The exponential function is the inverse function of the natural logarithm.
therefore [tex] ln(e^{f(x)}) = f(x)[/tex]. In your example, like any equation, what you do on one side of the equation must be done on the other side. You can take the natural log of both sides [tex]ln(e^{x})=ln(20) [/tex] Then using the property I gave above you should be able to solve for x Once you have practised using the idea given above, you can then tackle your second question. You may want to bring your xterms on one side of equation and any other terms, to the other side of equation. As with the first query, take the natural log of both sides. Though you eliminate your exponential function, you may still have some natural log terms left. That's okay, by substitution of values for x you should arrive at correct value f(x) to your question. Edit: By plotting the values of x you substitute and resulting values f(x), as Tide suggests; by observing the trend in your graph, you may find (or at least narrow down) your solutions more quickly. 



#5
Sep2205, 06:54 PM

P: 19

You mean I just replace values for x until I get that the equation equals 0. That's what I did first and got aproximately 2.001. I was just wondering if I could solve the equation instead of replacing numbers.




#6
Sep2205, 07:01 PM

P: 789

Anytime you have a logarithm, there are different rules that you need to know. For the first example you gave the one you need to know is this.
[tex]\log_{a}b^c=c\log_{a}b[/tex] it also follows that [tex]\ln a^b=b\ln a[/tex] So when you are given something like [tex]e^x=20[/tex], how can you apply this rule to solve that? For your second problem, as others have said, you cannot solve for x explicity so another method must be used. 



#7
Sep2205, 10:02 PM

P: 52

well, I just wanted to remind theOP 


Register to reply 
Related Discussions  
Convolution with exponentials  Engineering, Comp Sci, & Technology Homework  6  
Convolution with exponentials  Calculus  0  
Integrating exponentials  Precalculus Mathematics Homework  3  
Differentiating exponentials  Calculus  2  
AcidBase neutralization w/ more than 1 base.  Chemistry  6 