"Definition: A map ƒ: A ⊂ ℂ→ ℂ is called conformal at z0, if there exists an angle θ ∈[0,2Pi) and an r > 0 such that for any curve γ(t) that is differentiable at t=0, for which γ(t)∈ A and γ(0)= z0, and that satisfies γ ' ≠0, the curve σ(t) = ƒ(γ(t)) is differentiable at t=0 and, setting u =...