Analysis Theory of Functions of a Complex Variable by Markushevich

AI Thread Summary
The discussion centers on "Theory of Functions of a Complex Variable" by A.I. Markushevich, a comprehensive undergraduate textbook requiring a background in real analysis. The book spans three volumes, covering foundational concepts in complex analysis, including analytic functions, complex numbers, limits, continuity, differentiation, integration, and series. It delves into advanced topics such as Laurent series, the calculus of residues, univalent functions, and Riemann surfaces. The text is noted for its rigorous proofs and detailed exploration of significant theorems like the Jordan Curve Theorem and Picard's Theorem, making it a substantial resource for students seeking an in-depth understanding of complex variables. The book is described as a companion to Volkovyskii's work, though some users note discrepancies in section references. Overall, it is positioned as a serious academic text rather than an introductory guide.

For those who have used this book

  • Lightly Recommend

    Votes: 0 0.0%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    1
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents of Volume I:
Code:
[LIST]
[*] Basic Concepts
[LIST]
[*] Introduction
[LIST]
[*] Analytic Functions of a Real Variable
[*] Infinitel y DifferentiabJe Functions
[*] Motivation for Introducing the Complex Numbers. A Preview of Analytic Functions of a Complex VariabIe
[*] Problems
[/LIST]
[*] Complex Numbers
[LIST]
[*] Geometric Representation of Complex Numbers
[*] Compiex Algebra
[*] Powers and Roots of Complex Numbers
[*] Problems
[/LIST]
[*] Sets and Functions, Limits and Continuity
[LIST]
[*] Some Basic Definitions
[*] Sequences al Complex Numbers. Limit Points and Limits of Sequences
[*] Convergence of the Real and Imaginary Parts, Moduli and Arguments of a Complex Sequence
[*] Series with Complex Terms
[*] Limit Points of Sets Bounded Sets
[*] The Lìmit of a FunctÌon of a Complex Variabie
[*] Continuous Functions. More Set Theory
[*] The Distance between Two Sets
[*] Problems
[/LIST]
[*] Connectedness, Curves and Domains
[LIST]
[*] Connected Sets. Continuous Curves and Continua
[*] Domains. Interior. Exterior and Boundary Points
[*] Simply and Multiply Connected Domains
[*] The Jordan Curve Theorem
[*] Some Further Results
[*] Problems
[/LIST]
[*] Infinity and Stereographic Projections
[LIST]
[*] Proper and Improper Complex Numbers
[*] Stereographic projection. Sets of Points on the Riemann Sphere
[*] The Extended Complex Plane, The Point at Infinity
[*] Conformality of Stereographic Projeçtion. Continuous Curves in the Extended Plane
[*] The Transformation \zeta = 1/z
[*] Another Definition of an Angle wiih its Vertex at Infinity
[*] Problems
[/LIST]
[*] Homeomorphisms
[LIST]
[*] The One-to-One Continuous Image of a Domain
[*] Some Further Results
[*] Problems
[/LIST]
[/LIST]
[*] Differentiation. Elementary Functions
[LIST]
[*] Differentiation and the Cauchy-Riemann Equations
[LIST]
[*] Derivatives and Diffentials
[*] Rules for Differentiating Functions of a Complex Variabie
[*] The Cauchy-Riemann Equations. Analytic Functions
[*] Problems
[/LIST]
[*] Geometric Interpretation of the Derivative. Conformal Mapping
[LIST]
[*] Geometric Interpretation of Arg f'(z)
[*] Geometric Interpretation of |f'(z)|
[*] The Mapping w=\frac{az+b}{cz+d}
[*] Conformal Mapping of the Extended Plane
[*] Problems
[/LIST]
[*] Elementary Entire Functions
[LIST]
[*] Polynomials
[*] The Mapping w = P_n(z)
[*] The Mapping w = (z - a)^n
[*] The Exponential
[*] The Mapping w = e^z
[*] Some Functions Related to the Exponential
[*] The Mapping w = cos Z
[*] The Image of a Half-Strip under w = cos z
[*] Problem
[/LIST]
[*] Elementary Meromorphic Functions
[LIST]
[*] 
[*] Rationa] Functions
[*] The Group Property of Mobius Transformations
[*] The Circle-Preserving Property of Mobius Transforrnations
[*] Fixed Points of a Mobius Transformation. Invariance of the Cross Ratio
[*] Mapping of a Cirde onto a Circle
[*] Symmetry Transformations
[*] Examples
[*] Lobachevskìan Geometry
[*] The Mapping w = \frac{1}{2} ( z + \frac{1}{z} )
[*] Transcendental Meromorphic Functions. Trigonometric Functions
[*] Probems
[/LIST]
[*] Elementary Multiple-Valued Functions
[LIST]
[*] Sing]e-Valued Branches. Univalent Functions
[*] The Mapping w = \sqrt[n]{z}
[*] The Mapping w = \sqrt[n]{P(z)}
[*] The Logarithm,
[*] The Function z^a. Exponentials and Logarithms to an Arbitrary Base
[*] The Mapping w = Arc cos z
[*] The Mapping w = l + ln z
[*] Problems
[/LIST]
[/LIST]
[*] Integration, Power Series
[LIST]
[*] Rectifiable Curves. Complex Integrals
[LIST]
[*] Some Basic Detinitions
[*] Integra]s of Complex Functions
[*] Properties of Complex lntegrals
[*] Problems
[/LIST]
[*] Cauchy's Integral Theorem
[LIST]
[*] A Preliminary Result
[*] The Key Lemma
[*] Proof of Cauchy's IntegraI Theorem
[*] Application to the Evaluation of Definite Integrals
[*] Cauchy's Integral Theorem for a System of Contours
[*] Path-Independent Integrals. Primitives
[*] The Integra] as a Function of Its Upper Limit in a Multiply Connected Domain
[*] Problems
[/LIST]
[*] Cauchy's Integral and Related Topics
[LIST]
[*] Cauchy's lntegral Formula
[*] Some Consequences of Theorem 14.1
[*] Integrals of the Cauchy Type. Cauchy's Inequalities
[*] Boundary Values of Integrals of the Cauchy Type
[*] The Plemelj FormuJas
[*] Problems
[/LIST]
[*] Uniform Convergence. Infinite Products
[LIST]
[*] Uniformly Convergent Series
[*] Uniformly Convergent Sequences. Improper Integrals of the Cauchy Type
[*] Infinite Products
[*] Problems
[/LIST]
[*] Power Series: Rudiments
[LIST]
[*] The Cauchy-Hadamard Formula
[*] Taylor's Series. Tbe Uniqueness Property
[*] The Relation between Power Series and Fourier Series
[*] Expansion of an Analytic Function in Power Serìes
[*] Problems
[/LIST]
[*] Power Series: Ramifications
[LIST]
[*] The Interior Uniqueness Theorem. A-Points of Analytic Functions
[*] The Maximum Modulus Principle and Some of Its Consequences. Lemniscates.
[*] Circular Elements. Regular and Singular Points
[*] Behavior of a Power Series on lts Cirele of Convergence
[*] Compact Families of Analytic Functions
[*] Vitali's Theorem. Analytic Functions Defined by Integrals
[*] Problems
[/LIST]
[*] Methods for Expanding Functions in Taylor Series
[LIST]
[*] The Taylor Series of the Sum of a Series of Analytic Functions
[*] The Taylor Series of a Composite Function
[*] Division of Power Series
[*] Prob1ems
[/LIST]
[/LIST]
[*] Bibliography
[*] Index
[/LIST]

Table of Contents of Volume II:
Code:
[LIST]
[*] Laurent Series. Calculus of Residues
[LIST]
[*] Laurent's Series. Isolated Singular Points
[LIST]
[*] Laurent's Theorem
[*] Poles and Essential Singular Points
[*] Singular Points or f(z) \pm g(z), f(z)g(z) and f(z)/g(z)
[*] Behavior at Infinity. The Poles of g(z)(d/dz) Ln [f(z) - A]
[*] Dirichlet Series
[*] Problems
[/LIST]
[*] The Calculus of Residues and Its Applications
[LIST]
[*] The Residue Theorem
[*] The Argument Principle. The Theorems of Rouché and Hurwitz
[*] Residues at Infinity
[*] Cauchy's Theorem on Partial Fraction Expansions
[*] Examples or Partial Fraction Expansions
[*] Interpolation Theory
[*] Problems
[/LIST]
[*] Inverse and Implicit Functions
[LIST]
[*] Inverse Functions: The Single-Valued Case
[*] Inverse Functions: The Multìple Valued Case
[*] Examples of Lagrange's Series
[*] Functions of Two Complex Variables
[*] Weierstrass' Preparation Theorem. The Implicit Function Theorem
[*] Problems
[/LIST]
[*] Univalent Functions
[LIST]
[*] Some Elementary Results
[*] Sufficient Conditions for Univalence
[*] Mapping of the Upper Half-Plane onto a Rectangle
[*] The Schwarz-Christoffel Transformation
[*] Sufficient Conditions for Univalent Mapping onto a Half-Plane
[*] Problems
[/LIST]
[/LIST]
[*] Harmonic and Subharmonic Functions
[LIST]
[*] Basic Properties of Harmonic Functions
[LIST]
[*] Laplace's Equation. Conjugate Harmonic Functions
[*] Poisson's Integral. Schwarz's Formula
[*] The Dirichlet Problem for a Disk
[*] Behavior of a Harmonic Function near an Isolated Singular Point
[*] Sequences of Harmonic Functions. Harnack's Theorem
[*] Generalizatìon of Poisson's Integral. The Dirichlet Problem for a Jordan Domain
[*] Problems
[/LIST]
[*] Applications to Fluid Dynamics
[LIST]
[*] Irrotational and Solenoidal Flows. The Complex Potential
[*] Examples
[*] Flow past a Circular Cylinder
[*] Flow past an Arbitrary Cy1indrical Object. The Kutta-Joukowski Theorem
[*] Problems
[/LIST]
[*] Subharmonic Functions
[LIST]
[*] The Key Lemma. The Converse of Theorem 5.6
[*] The Generalized Maximum Modulus Principle and Its Application
[*] The Phragmén-LindelOf Theorems
[*] Problems
[/LIST]
[*] The Poisson-Jensen Formula and Related Topics
[LIST]
[*] Various Versions of the Poisson-Jensen Formula
[*] Jensen's Inequality, Blaschke Products
[*] Functions of Bounded Characteristic
[*] Nevanlinna's Theorem
[*] Problems
[/LIST]
[/LIST]
[*] Entire and Meromorphic Functions
[LIST]
[*] Basic Properties of Entire Functions
[LIST]
[*] Growth of an Entire Function
[*] Behavior of e^{P(z)}
[*] Order and Type in Terms of the Taylor Coefficients
[*] Distribution of Zeros
[*] A-Points of Entire Functions
[*] Picard's First Theorem
[*] The Phragmén-Lindelof Indicator Function
[*] Problems
[/LIST]
[*] Infinite Products and Partial Fraction Expansions
[LIST]
[*] Weierstrass' Theorem
[*] The Exponent of Convergence
[*] Hadamard's Factorization Theorem
[*] Borel's Theorem
[*] Meromorphic Functions
[*] Mittag-Leffler's Theorem
[*] The Gamma Function
[*] Integral Representations of \Gamma(z). Partial Fraction Expansion of \Gamma(z)
[*] Asymptotc Behavior of \Gamma(z). Stirling's Formula
[*] Problems
[/LIST]
[/LIST]
[*] Bibliography
[*] Index
[/LIST]

Table of Contents of Volume III:
Code:
[LIST]
[*] Conformal Mapping. Approximation Theory
[LIST]
[*] Conformal Mapping: Rudiments
[LIST]
[*] Conformal Mapping of Annular Domains
[*] Conformal Mapping of Simply Connected Domains
[*] Basic Properties of Univalent Functions
[*] Problems
[/LIST]
[*] Conformal Mapping: Ramifications
[LIST]
[*] Conformal Mapping of Sequences of Domains
[*] Curvilinear Ha1f-Intervals
[*] Accessible Boundary Points
[*] Prime Ends
[*] Boundary Behavior of Conformal Mappings
[*] Problems
[/LIST]
[*] Approximation by Rational Functions and Polynomials
[LIST]
[*] Locally Analytic Functions
[*] Functions Meromorphic on a Domain
[*] Runge's Theorem and Related Results
[*] ApproximatÌon on Closed Domains
[*] Approximation on Continua
[*] Faber Polynomials
[*] Bernstein's Theorem
[*] Approximation in the Mean
[*] Polynomials Orthogonal on a Domain
[*] Problems
[/LIST]
[/LIST]
[*] Periodic and Elliptic Functions
[LIST]
[*] Periodic Meromorphic Functions
[LIST]
[*] Preliminaries
[*] Periodic Entire Functions. Trigonometric Polynomials
[*] Elliptic Functions
[*] Problems
[/LIST]
[*] Elliptic Functions: Weierstrass Theory
[LIST]
[*] Weierstrass' Elliptic Functions
[*] The Functions P(z | a, ib) and P(z | a - ib, a + ib)
[*] The Differential Equation for P(z)
[*] Inversion of Elliptic Integrals
[*] The Functions \xi(z) and \sigma(z)
[*] The Addition Theorem for P(z)
[*] The Spherical Pendulum
[*] Problems
[/LIST]
[*] Elliptic Functions: Jacobi's Theory
[LIST]
[*] Jacobi's Elliptic Functions
[*] Theta Functions and Their Relation to Elliptic Functions
[*] Infinite Product Expansions of Theta Functions
[*] Problems
[/LIST]
[/LIST]
[*] Riemann Surfaces, Analytic Continuation
[LIST]
[*] Riemann Surfaces
[LIST]
[*] Topological Preliminaries
[*] Abstract Riernann Surfaces
[*] Triangulations
[*] Interior Mappings
[*] Riemann Covering Surfaces
[*] Regular Analytic Curves
[*] The Riemann Surface of a Meromorphic Function
[*] Examples
[*] Problem
[/LIST]
[*] Analytic Continuation
[LIST]
[*] Elements. The Complete Analytic Function
[*] Circular Elements. The Monodromy Theorem. 
[*] Analytic Continuation in a Star
[*] Singular Points. Generalized Elements and the Analytic Configuration
[*] The Ana]ytic Configuration as a Topological Surface
[*] The Analytic Configuration as a Riemann Surface
[*] Algebraic Functions
[*] Problems
[/LIST]
[*] The Symmetry Principle and Its Applications
[LIST]
[*] The Symmetry Principle
[*] More on the Schwarz-Christoffel Transformation
[*] Examples
[*] The Modular Function. Picard's First Theorem
[*] Normal Families of Analytic Functions
[*] Picard's Second Theorem. Julia Directions
[*] Problems
[/LIST]
[/LIST]
[*] Bibliography
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
This book doesn't play around. It's got complete sections & proofs of things like the Jordan Curve theorem & big Picard, & I guess it probably should considering it's 1200 pages. Definitely not for an intro. It's actually the main companion text to the Volkovyskii book, except the sections (in my copy anyway) are out of order. I mean Volkovyskii will reference a section in this one but the numbering or content won't make any sense. Other than that I wouldn't know what other 'editorializing' the translator has done.
 
  • Like
Likes Nathanmaul
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...

Similar threads

Replies
5
Views
9K
  • Poll Poll
Replies
1
Views
5K
Replies
1
Views
5K
  • Poll Poll
Replies
3
Views
6K
  • Poll Poll
Replies
4
Views
7K
Replies
18
Views
3K
Replies
1
Views
4K
Replies
2
Views
2K
Back
Top