Dadface said:
[..] it was assumed that not just EPR but all theories of hidden variables are incorrect :
NO PHYSICAL THEORY OF LOCAL HIDDEN VARIABLES CAN EVER REPRODUCE ALL OF THE PREDICTIONS OF QUANTUM MECHANICS.
How can such a sweeping generalisation, which is based on EPR only, be made about all potential theories? [..]
As has been pointed out in early discussions, (see posts #48, 49 here:
https://www.physicsforums.com/showthread.php?t=664394&highlight=counterfactual&page=3), Bell's argument relies among other things on counterfactual definiteness, and that appears to be a bit tricky.
I came across the following discussion based on Tomasz F. Bigaj, Non-locality and Possible Worlds: A Counterfactual Perspective on Quantum Entanglement:
"it is not entirely clear how to handle counterfactual reasoning in an indeterministic context. Suppose that while you are flipping a coin (which we will suppose to be a fundamentally indeterministic event for this discussion -- ex hypothesi, nothing in the actual world is causally sufficient to determine the result of the flip), I hum a bar of Ode to Joy. My humming (again, ex hypothesi) has no causal influence on your coin-flipping. You get heads. If I had not been humming, would you still have gotten heads?
Logical intuitions seem to differ on this point. Some argue that, because your flip was indifferent to my humming, you would still have gotten heads if I had not been humming. My humming, or lack of it, could not have affected the outcome. Others argue that we cannot affirm that the flip sans humming would have resulted in heads, because the result is in fact not determined by anything -- it was completely indeterministic. The (imagined) trial flip sans humming must be considered to be another, independent flip of the coin, the result of which we cannot predict. [..] Yet another 'intuition' is that the counterfactual in question is itself indeterminate in truth-value."
-
http://ndpr.nd.edu/news/23047-non-l...rfactual-perspective-on-quantum-entanglement/
I came across several of that type of discussions; and I have not yet made up my mind. I'm certainly not convinced that counterfactual definiteness should hold in a "realistic" world, that is, according to concepts of "realists" which are not necessarily limited to definitions of EPR and Bell.
In an earlier thread about another topic, Lugita asked me some questions concerning the topic under discussion here, and so I'll partly reply here:
lugita15 said:
[..] To sum up, in principle the term "counterfactual definiteness" COULD refer to something more general, but for the purposes of Bell's theorem all we need is the meaningfullness of asking what a measurement that you didn't make would yield if you had made it.
See above. Usually such tests are done with the help of random generators. As we are clueless about how stochastic processes work, IMHO we have no theory to support or reject the possibility to predict the outcome of a stochastic process that has not happened because another stochastic process did not select it.
Cantor did try to prove a negative. He said that no attempt to make a one-to-one correspondence between the natural numbers and the real numbers can possibly work. Similarly, Bell said that no attempt to make a local realistic (non-superdeterministic) explanation of the experimental predictions of quantum mechanics can possibly work.
Apparently different people mean different things with "proving a negative"... Cantor discussed known sets, he did not try to prove a negative in the way Bell did. Bell presumably showed that all kinds of not yet imagined theories cannot match a known model. And that much wider sounding claim is the topic here.
Can you elaborate on why you think [that in practice, no physical assumption about reality can be made without any models of reality]?
Sure, I exaggerated a little. A model is composed of assumptions of that which is modeled. In other words, if we make assumptions about something (as EPR and Bell did), that already consists a model. More assumptions provides us with a more detailed model.
Thus, in agreement with the OP and DrChinese: Bell's theorem necessarily applies to the class of theories that match the EPR definitions of terms and Bell's assumptions about such theories. That is less general than Bell's theorem as cited in the first post sounds (and I think, also less general than Bell intended).