Great question, Tim! I used to wonder about that myself.
If I understand you correctly, you're saying that because the electric & magnetic fields are perpendicular, it seems like they could correspond to the two dimensions in the wavefunction values.
First off, sorry but they don't. For example, in an ideal plane-polarized EM wave, the electric & magnetic fields have their zeros at the same set of points. The quantum wf, on the other hand, cycles about the origin in the complex plane - the modulus (distance from the origin in the complex plane) is the square root of the probability of detecting the photon there, so it doesn't depend on the phase of (either) wave. (Somebody correct me if I'm wrong on that point)
More fundamentally, the two "right angles" don't really have much in common. The directions of the field lines are actual spatial directions- the ways that a (test) positive charge or north pole would be pushed. The right angle between them is an angle in space. The complex plane, meanwhile, is purely a conceptual construct. (Don't ask me what the difference is between reality and a conceptual construct, but there is a difference!) Its directions aren't towards anywhere- they're just a way of expressing a pure quantity that is two-dimensional. The right angle expresses the fact that the dimensions are orthogonal,or independent- a real number has no imaginary component & vice-versa.
Also, in the case of quantum waves, you can't really speak about the "real and imaginary components" at all. You see, the only actual effect of wf values is to set probabilities for experimental results. These depend not on the value itself but on its modulus squared. So any two values with the same modulus, -√2 and 1+i for instance, are completely interchangeable as long as you're only dealing with one wave. When different wave elements interfere, that's when the actual complex values come in- you add them up, and they can cancel out, and then the modulus is zero, and you can't detect the photon there, and you get a black stripe on your screen. But even so, you can multiply all the wf values is your problem by anyone complex number, and you haven't changed anything at all. If before two waves canceled as 1 & -1, now they'll cancel as -3+2i & 3-2i. So if we say that "ψ(x) is purely real", it's an arbitrary description, similar to choosing an "origin" for spatial coordinates.
So what's the relationship between the quantum wave of the photon and the EM wave? Well, they have the same frequency & wavelength. The direction of the fields is related to the photon's "spin", which changes only when you measure it. Beyond that I really don't know much- I haven't yet taken any actual QM courses. (maybe that's why I can still express what I do know in understandable English)
EDIT: I just read Keth's post, and it sounds like I screwed up. Keth, think you can read this post & explain my mistakes?
ψ(x)=E+iB ? Wow, really? That sounds like exactly what Tim wanted! But that must mean the value sometimes goes to zero, even within one simple wave. What causes that? Can it be observed (maybe with very-low-frequency radio waves and highly time-sensitive detectors)?
A photon can't be localized? Don't they dislodge electrons from individual atoms? And what happens if you try to trap one between mirrors and detect it later on?
Am I at least right on these two points? A: ψ(x)=E+iB must be, on one level, a convention: it could have been B-iE. B: This formula does not depend on E and B being perpendicular.
Maybe I should shut my big mouth sometimes, but posting is fun! Someone will hope fully gain from the discussion.