MHB 10.02.10 Find the sum of the series

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
The series sum \( S_n = \sum_{n=1}^{\infty} \frac{4}{(4n-1)(4n+3)} \) simplifies to \( \frac{1}{3} \). By expanding the rational expression, it can be rewritten as \( \frac{1}{(4n-1)} - \frac{1}{(4n+3)} \). The partial sums reveal that all terms cancel except for the first and last, leading to \( S_N = \frac{1}{3} - \frac{1}{4N+3} \). Taking the limit as \( N \) approaches infinity confirms that the sum converges to \( \frac{1}{3} \). The discussion concludes with an acknowledgment of the steps involved in reaching this result.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the sum of the series}\\$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\frac{4}{(4n-1)(4n+3)}=\color{red}{\frac{1}{3}} \\
\end{align*}
$\textsf{expand rational expression } $
\begin{align*}\displaystyle
\frac{4}{(4n-1)(4n+3)}
&=\frac{A}{(4n-1)}+\frac{B}{(4n+3)}\\
4&=A(4n+3)+B(4n-1)\\
\end{align*}
$\textit{if $\displaystyle n=-\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=-2B \therefore B=-1\\
\end{align*}
$\textit{if $\displaystyle n=\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=4A \therefore A=1\\
\end{align*}
$\textit{then}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\left[\frac{1}{(4n-1)}- \frac{1}{(4n+3)}\right]\\
\end{align*}
$\textit{partial sum $S_k$}$
\begin{align*}\displaystyle
&=\left[ \frac{1}{3}-\frac{1}{7} \right]
+\left[ \frac{1}{7}-\frac{1}{11} \right]
+\left[ \frac{1}{11}-\frac{1}{15} \right]
+ \cdots +
\end{align*}
$\textit{got lost here}$
 
Last edited:
Physics news on Phys.org
It holds that $$\frac{4}{(4n-1)(4n+3)} =\frac{1}{(4n-1)}-\frac{1}{(4n+3)}$$ We have the following partial sum:
$$S_{N}=\sum_{n=1}^N = \left[\frac{1}{4n-1}- \frac{1}{4n+3}\right]= \left (\frac{1}{3}- \frac{1}{7}\right )+\left (\frac{1}{7}- \frac{1}{11}\right )+\left (\frac{1}{11}-\frac{1}{15}\right )+\ldots +\left (\frac{1}{4N-1}- \frac{1}{4N+3}\right )$$

Every term will be canceled out except of the first and the last one. So, we get $$ S_N=\frac{1}{3}- \frac{1}{4N+3}$$

Therefore, $$\sum_{n=1}^{\infty}=\lim_{N\rightarrow \infty}S_N=\lim_{N\rightarrow \infty}\left (\frac{1}{3}- \frac{1}{4N+3}\right )=\frac{1}{3}$$
 
thanks

guess the last few steps alluded me

:cool::cool::cool::cool::cool::cool:
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K