10.02.10 Find the sum of the series

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
SUMMARY

The sum of the series defined by \( S_{n}=\sum_{n=1}^{\infty} \frac{4}{(4n-1)(4n+3)} \) converges to \( \frac{1}{3} \). This result is derived by expanding the rational expression into partial fractions, yielding \( \frac{4}{(4n-1)(4n+3)} = \frac{1}{(4n-1)} - \frac{1}{(4n+3)} \). The partial sums \( S_{N} \) simplify to \( S_{N}=\frac{1}{3}-\frac{1}{4N+3} \), and taking the limit as \( N \) approaches infinity confirms that \( \sum_{n=1}^{\infty} S_{n} = \frac{1}{3} \).

PREREQUISITES
  • Understanding of infinite series and convergence
  • Knowledge of partial fraction decomposition
  • Familiarity with limits in calculus
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study techniques for evaluating infinite series
  • Learn about convergence tests for series
  • Explore advanced partial fraction decomposition methods
  • Investigate the application of series in real-world problems
USEFUL FOR

Mathematicians, students studying calculus, educators teaching series convergence, and anyone interested in advanced algebraic techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the sum of the series}\\$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\frac{4}{(4n-1)(4n+3)}=\color{red}{\frac{1}{3}} \\
\end{align*}
$\textsf{expand rational expression } $
\begin{align*}\displaystyle
\frac{4}{(4n-1)(4n+3)}
&=\frac{A}{(4n-1)}+\frac{B}{(4n+3)}\\
4&=A(4n+3)+B(4n-1)\\
\end{align*}
$\textit{if $\displaystyle n=-\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=-2B \therefore B=-1\\
\end{align*}
$\textit{if $\displaystyle n=\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=4A \therefore A=1\\
\end{align*}
$\textit{then}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\left[\frac{1}{(4n-1)}- \frac{1}{(4n+3)}\right]\\
\end{align*}
$\textit{partial sum $S_k$}$
\begin{align*}\displaystyle
&=\left[ \frac{1}{3}-\frac{1}{7} \right]
+\left[ \frac{1}{7}-\frac{1}{11} \right]
+\left[ \frac{1}{11}-\frac{1}{15} \right]
+ \cdots +
\end{align*}
$\textit{got lost here}$
 
Last edited:
Physics news on Phys.org
It holds that $$\frac{4}{(4n-1)(4n+3)} =\frac{1}{(4n-1)}-\frac{1}{(4n+3)}$$ We have the following partial sum:
$$S_{N}=\sum_{n=1}^N = \left[\frac{1}{4n-1}- \frac{1}{4n+3}\right]= \left (\frac{1}{3}- \frac{1}{7}\right )+\left (\frac{1}{7}- \frac{1}{11}\right )+\left (\frac{1}{11}-\frac{1}{15}\right )+\ldots +\left (\frac{1}{4N-1}- \frac{1}{4N+3}\right )$$

Every term will be canceled out except of the first and the last one. So, we get $$ S_N=\frac{1}{3}- \frac{1}{4N+3}$$

Therefore, $$\sum_{n=1}^{\infty}=\lim_{N\rightarrow \infty}S_N=\lim_{N\rightarrow \infty}\left (\frac{1}{3}- \frac{1}{4N+3}\right )=\frac{1}{3}$$
 
thanks

guess the last few steps alluded me

:cool::cool::cool::cool::cool::cool:
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K