MHB 10.5.55 Does the following series converge or diverge?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Series
Click For Summary
The series \( S_n = \sum_{n=1}^{\infty} \frac{10^n n! n!}{(2n)!} \) diverges, as determined by the Ratio Test. The limit calculated from the test yields \( p = \frac{5}{2} \), which is greater than 1, indicating divergence. Additionally, the series can be compared to \( \sum_{n=1}^{\infty} \left( \frac{5}{2} \right)^n \), which also diverges. Therefore, the conclusion is that the series does not converge. The analysis confirms the divergence of the series using established convergence tests.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{10.5.55}$
$\textsf{ Does the following series converge or diverge?}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}\frac{10^n n!n!}{(2n)!} \\
&=
\end{align*}
$\textit{ratio test?}$

:cool:
 
Last edited:
Physics news on Phys.org
Yes, the ratio test will work well here. (Yes)
 
$\tiny{10.5.55}$
$\textsf{ 10.5.55 Does the following series converge or diverge?}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}\frac{10^n n!n!}{(2n)!} \\
&=
\end{align*}

$\textsf{The Ratio Test Let }$
$\displaystyle\sum ar^n$ $
\textsf{ be a series with positive terms and suppose that}$
\begin{align*}\displaystyle
&\lim_{{n}\to{\infty}} \frac{a_n+1}{a_n}=p \\
\end{align*}
$\textsf{Then}\\$
$\textsf{(a) the series converges if $p<1$}\\$
$\textsf{(b) the series diverges if $p>1$ or p is infinite}\\$
$\textsf{(c) the test is inconclusive if $p=1$}\\$
$\textsf{So}\\$
\begin{align*}\displaystyle
&=\lim_{{n}\to{\infty}}\frac{10^n n!n!+1}{(2n)^n}=p=\frac{5}{2}\\
\end{align*}

$\textit{The series diverges by the Ratio Test since the limit resulting from the test is $\displaystyle\frac{5}{2}$}$
 
Last edited:
Yes, I got:

$$p=\lim_{n\to\infty}\left(\frac{10(n+1)^2}{(2n+2)(2n+1)}\right)=\frac{5}{2}>1$$

Divergent. $\checkmark$
 
$$(2n)! = 1 \times 2 \times \cdots (2n-1)(2n) \leq 2 \times 2 \cdots (2n) (2n) = 4^n(n!)^2$$

Hence

$$\sum_{n=1}^\infty \frac{10^n (n!)^2}{(2n)!} \geq \sum_{n=1}^\infty \left( \frac{5}{2}\right)^n$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K