MHB 101fobster's question at Yahoo Answers regarding finding a parabolic function

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
The discussion centers on finding a quadratic equation that passes through three specific points: the x-intercept at -1, the y-intercept at -10, and the point (2, -6). The quadratic function is represented as f(x) = ax^2 + bx + c, leading to a system of equations derived from the given points. Solving these equations reveals the quadratic equation as f(x) = 4x^2 - 6x - 10. Additionally, there is a mention of the possibility of a horizontal parabola or even a circular equation, but the main focus remains on the quadratic function. The coordinates provided are noted to be rational, which is an interesting observation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Mathematics news on Phys.org
Hello 101fobster,

We are given 3 points through which the quadratic function must pass. Let's represent the function with:

$f(x)=ax^2+bx+c$

The 3 points we are given are:

(-1,0), (0,-10), (2,-6)

and so we may write the linear system:

$a(-1)^2+b(-1)+c=0$

$a(0)^2+b(0)+c=-10$

$a(2)^2+b(2)+c=-6$

or:

$a-b+c=0$

$c=-10$

$4a+2b+c=-6$

Since the second equation gives us $c=-10$, we now have:

$a-b=10$

$2a+b=2$

Adding these, we eliminate $b$ to obtain:

$3a=12\,\therefore\,a=4$

and so from the first equation:

$b=-6$

and thus:

$f(x)=4x^2-6x-10$
 
What is the quadratic equation with these points?
. . x-intercept: -1 . . y-intercept: -10 . . Point: (2,-6)
The parabola could "horizontal" . . . of the form: .$x \:=\:ay^2 + by + c$

The equation is: .$x \,=\,\text{-}\frac{1}{10}y^2 - \frac{11}{10}y - 1$The problem did not specify a parabola.

The quadratic could be a circle: .$(x+\frac{17}{4})^2 + (y + \frac{43}{8})^2 \:=\: (\frac{5}{8}\sqrt{101})^2$

It has two x-intercepts: $\begin{Bmatrix}(\text{-}1,0) \\ (\text{-}\frac{15}{2},0)\end{Bmatrix}$ .and two y-intercepts: $\begin{Bmatrix}(0,\text{-}10) \\ (0,\text{-}\frac{3}{4}) \end{Bmatrix}$

I was surprised to see that all the coordinates are rational.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top