MHB 101fobster's question at Yahoo Answers regarding finding a parabolic function

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion centers on finding a quadratic equation that passes through three specific points: the x-intercept at -1, the y-intercept at -10, and the point (2, -6). The quadratic function is represented as f(x) = ax^2 + bx + c, leading to a system of equations derived from the given points. Solving these equations reveals the quadratic equation as f(x) = 4x^2 - 6x - 10. Additionally, there is a mention of the possibility of a horizontal parabola or even a circular equation, but the main focus remains on the quadratic function. The coordinates provided are noted to be rational, which is an interesting observation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Mathematics news on Phys.org
Hello 101fobster,

We are given 3 points through which the quadratic function must pass. Let's represent the function with:

$f(x)=ax^2+bx+c$

The 3 points we are given are:

(-1,0), (0,-10), (2,-6)

and so we may write the linear system:

$a(-1)^2+b(-1)+c=0$

$a(0)^2+b(0)+c=-10$

$a(2)^2+b(2)+c=-6$

or:

$a-b+c=0$

$c=-10$

$4a+2b+c=-6$

Since the second equation gives us $c=-10$, we now have:

$a-b=10$

$2a+b=2$

Adding these, we eliminate $b$ to obtain:

$3a=12\,\therefore\,a=4$

and so from the first equation:

$b=-6$

and thus:

$f(x)=4x^2-6x-10$
 
What is the quadratic equation with these points?
. . x-intercept: -1 . . y-intercept: -10 . . Point: (2,-6)
The parabola could "horizontal" . . . of the form: .$x \:=\:ay^2 + by + c$

The equation is: .$x \,=\,\text{-}\frac{1}{10}y^2 - \frac{11}{10}y - 1$The problem did not specify a parabola.

The quadratic could be a circle: .$(x+\frac{17}{4})^2 + (y + \frac{43}{8})^2 \:=\: (\frac{5}{8}\sqrt{101})^2$

It has two x-intercepts: $\begin{Bmatrix}(\text{-}1,0) \\ (\text{-}\frac{15}{2},0)\end{Bmatrix}$ .and two y-intercepts: $\begin{Bmatrix}(0,\text{-}10) \\ (0,\text{-}\frac{3}{4}) \end{Bmatrix}$

I was surprised to see that all the coordinates are rational.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K