MHB -12.1 find x w\ eq w\ 3 variables

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Variables
AI Thread Summary
The discussion focuses on isolating the variable x from the equation x^2 + m^2 = 2mx + (nx)^2, with the conditions n ≠ 1 and n ≠ -1. Participants rewrite the equation into a quadratic form and explore methods to factor or simplify it. The correct solutions for x are identified as x = m/(1-n) and x = m/(1+n). An alternative approach using absolute values is also suggested, leading to the same conclusions. The thread concludes with participants confirming the correctness of the derived solutions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$x^2+m^2=2mx + (nx)^2$, $n\neq1$, $n\neq-1$
isolate $x$

rewriting
$m^2-2 m x-n^2 x^2+x^2 = 0$
$m(m-2x)-x^2(n-1)(n+1)=0$

I set this to 0 thinking I could factor by grouping but not..
So seem to be stuck on how to to isolate x

the books answere to this is $\frac{m}{1-n},\frac{m}{1+n}$

thnx ahead, :cool:
 
Mathematics news on Phys.org
karush said:
$x^2+m^2=2mx + (nx)^2$, $n\neq1$, $n\neq-1$
isolate $x$

rewriting
$m^2-2 m x-n^2 x^2+x^2 = 0$
$m(m-2x)-x^2(n-1)(n+1)=0$

I set this to 0 thinking I could factor by grouping but not..
So seem to be stuck on how to to isolate x

the books answere to this is $\frac{m}{1-n},\frac{m}{1+n}$

thnx ahead, :cool:

Hi karush, :)

\[m^2-2 m x-n^2 x^2+x^2 = 0\]

\[\Rightarrow (1-n)(1+n)x^2-2mx+m^2=0\]

This is a quadratic equation of \(x\) and the roots of this equation is given by,

\[x=\frac{2m\pm\sqrt{4m^2-4(1-n^2)m^2}}{2(1-n^2)}\]

Hope you can simplify this and see if you get the given solutions. :)

Kind Regards,
Sudharaka.
 
Sudharaka said:
\[x=\frac{2m\pm\sqrt{4m^2-4(1-n^2)m^2}}{2(1-n^2)}\]

Hope you can simplify this and see if you get the given solutions. .

how this

$\frac{2m\pm \sqrt{4m^2n^2}}{2(1-n^2)} \Rightarrow \frac{m(1 \pm n^2)}{(1-n^2)} \Rightarrow \{\frac{m}{1-n},\frac{m}{1+n}\}$
 
karush said:
how this

$\frac{2m\pm \sqrt{4m^2n^2}}{2(1-n^2)} \Rightarrow \frac{m(1 \pm n^2)}{(1-n^2)} \Rightarrow \{\frac{m}{1-n},\frac{m}{1+n}\}$

Yes that is correct. (Yes)

Edit: Maybe this is just a typo since you have obtained the answer correctly. But the second expression you have written should be,

\[x=\frac{m(1\pm n)}{1-n^2}\]

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Yes that is correct. (Yes)

thot it might quadratic but couldn't compose it.

Much Mahalo...:cool:
 
karush said:
$x^2+m^2=2mx + (nx)^2$, $n\neq1$, $n\neq-1$
isolate $x$

rewriting
$m^2-2 m x-n^2 x^2+x^2 = 0$
$m(m-2x)-x^2(n-1)(n+1)=0$

I set this to 0 thinking I could factor by grouping but not..
So seem to be stuck on how to to isolate x

the books answere to this is $\frac{m}{1-n},\frac{m}{1+n}$

thnx ahead, :cool:

Why not this?

\[ \displaystyle \begin{align*} x^2 + m^2 &= 2mx + (nx)^2 \\ x^2 - 2mx + m^2 &= (nx)^2 \\ (x - m)^2 &= (nx)^2 \\ |x - m| &= |nx| \\ |x - m| &= |n||x| \end{align*} \]

Go from here...
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top