MHB -12.1 find x w\ eq w\ 3 variables

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Variables
AI Thread Summary
The discussion focuses on isolating the variable x from the equation x^2 + m^2 = 2mx + (nx)^2, with the conditions n ≠ 1 and n ≠ -1. Participants rewrite the equation into a quadratic form and explore methods to factor or simplify it. The correct solutions for x are identified as x = m/(1-n) and x = m/(1+n). An alternative approach using absolute values is also suggested, leading to the same conclusions. The thread concludes with participants confirming the correctness of the derived solutions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$x^2+m^2=2mx + (nx)^2$, $n\neq1$, $n\neq-1$
isolate $x$

rewriting
$m^2-2 m x-n^2 x^2+x^2 = 0$
$m(m-2x)-x^2(n-1)(n+1)=0$

I set this to 0 thinking I could factor by grouping but not..
So seem to be stuck on how to to isolate x

the books answere to this is $\frac{m}{1-n},\frac{m}{1+n}$

thnx ahead, :cool:
 
Mathematics news on Phys.org
karush said:
$x^2+m^2=2mx + (nx)^2$, $n\neq1$, $n\neq-1$
isolate $x$

rewriting
$m^2-2 m x-n^2 x^2+x^2 = 0$
$m(m-2x)-x^2(n-1)(n+1)=0$

I set this to 0 thinking I could factor by grouping but not..
So seem to be stuck on how to to isolate x

the books answere to this is $\frac{m}{1-n},\frac{m}{1+n}$

thnx ahead, :cool:

Hi karush, :)

\[m^2-2 m x-n^2 x^2+x^2 = 0\]

\[\Rightarrow (1-n)(1+n)x^2-2mx+m^2=0\]

This is a quadratic equation of \(x\) and the roots of this equation is given by,

\[x=\frac{2m\pm\sqrt{4m^2-4(1-n^2)m^2}}{2(1-n^2)}\]

Hope you can simplify this and see if you get the given solutions. :)

Kind Regards,
Sudharaka.
 
Sudharaka said:
\[x=\frac{2m\pm\sqrt{4m^2-4(1-n^2)m^2}}{2(1-n^2)}\]

Hope you can simplify this and see if you get the given solutions. .

how this

$\frac{2m\pm \sqrt{4m^2n^2}}{2(1-n^2)} \Rightarrow \frac{m(1 \pm n^2)}{(1-n^2)} \Rightarrow \{\frac{m}{1-n},\frac{m}{1+n}\}$
 
karush said:
how this

$\frac{2m\pm \sqrt{4m^2n^2}}{2(1-n^2)} \Rightarrow \frac{m(1 \pm n^2)}{(1-n^2)} \Rightarrow \{\frac{m}{1-n},\frac{m}{1+n}\}$

Yes that is correct. (Yes)

Edit: Maybe this is just a typo since you have obtained the answer correctly. But the second expression you have written should be,

\[x=\frac{m(1\pm n)}{1-n^2}\]

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Yes that is correct. (Yes)

thot it might quadratic but couldn't compose it.

Much Mahalo...:cool:
 
karush said:
$x^2+m^2=2mx + (nx)^2$, $n\neq1$, $n\neq-1$
isolate $x$

rewriting
$m^2-2 m x-n^2 x^2+x^2 = 0$
$m(m-2x)-x^2(n-1)(n+1)=0$

I set this to 0 thinking I could factor by grouping but not..
So seem to be stuck on how to to isolate x

the books answere to this is $\frac{m}{1-n},\frac{m}{1+n}$

thnx ahead, :cool:

Why not this?

\[ \displaystyle \begin{align*} x^2 + m^2 &= 2mx + (nx)^2 \\ x^2 - 2mx + m^2 &= (nx)^2 \\ (x - m)^2 &= (nx)^2 \\ |x - m| &= |nx| \\ |x - m| &= |n||x| \end{align*} \]

Go from here...
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top