12.4.9 - Area of a triangle given points in 3D space

Click For Summary

Discussion Overview

The discussion revolves around calculating the area of a triangle defined by three points in 3D space using vector methods. Participants explore the cross product approach and also mention alternative methods such as Heron's formula.

Discussion Character

  • Technical explanation
  • Homework-related
  • Debate/contested

Main Points Raised

  • One participant presents a calculation of the area using the cross product of vectors derived from the triangle's vertices, expressing uncertainty about the signs in the determinant calculation.
  • Another participant points out a typo in the vector representation but acknowledges that the calculation was correct, emphasizing the importance of notation.
  • A third participant suggests using Heron's formula as a potentially simpler method to find the area of the triangle based on the lengths of its sides.
  • One participant notes that the assignment specifically requires the use of the vector method, indicating a preference for the original approach despite the suggestion of an alternative.

Areas of Agreement / Disagreement

Participants generally agree on the method of calculating the area using vectors, but there is a disagreement regarding the notation and the potential use of alternative methods like Heron's formula. The discussion remains unresolved regarding the best approach to take.

Contextual Notes

There are unresolved issues regarding notation and the implications of using different methods for calculating the area of the triangle. The discussion reflects a mix of correct calculations and typographical errors.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the area of the triangle determined by the points }$
\begin{align*}\displaystyle
&P(1,1,1), \, Q(-2,-7,-1), \, R(-7,-1,4)\\
\end{align*}

\begin{align*}\displaystyle
\vec{PQ}&=(-2-1)i&+(-7-1)J&+(-1-1)k&=-3i-8j-2k\\
\vec{PR}&=(-7-1)i&+(-1-1)j&+(4-1) k&=-8i-2j-3k
\end{align*}
\begin{align*}\displaystyle
\vec{PQ} \times \vec{PR}&=
\begin{vmatrix}
i&j&k\\-3&-8&-2\\-8&-2&3
\end{vmatrix}\\
&=
\begin{vmatrix}
-8&-2\\-2&3
\end{vmatrix}i-
\begin{vmatrix}
-3&-2\\-8&3
\end{vmatrix}j-
\begin{vmatrix}
-3&-8\\-8&-2
\end{vmatrix}k\\
&=(-24-4)i-(-9-16)j+(6-64)k\\
&=-28i+25j-58k\\
&=\sqrt{28^2 + 25^2 + 58^2}\\
&=\sqrt{4773}
\end{align*}
$\textit{divide by half to obtain area of triangle}$
$\displaystyle \frac{\sqrt{4773}}{2}$
I just followed an example but was unsure about the signs in between matrix
and suggestions ?

View attachment 7309
 

Attachments

  • 12.4.9.PNG
    12.4.9.PNG
    3.7 KB · Views: 170
Physics news on Phys.org
Re: 12.4.9 area of a triangle given points in 3D space

karush said:
$\textsf{Find the area of the triangle determined by the points }$
\begin{align*}\displaystyle
&P(1,1,1), \, Q(-2,-7,-1), \, R(-7,-1,4)\\
\end{align*}

\begin{align*}\displaystyle
\vec{PQ}&=(-2-1)i&+(-7-1)J&+(-1-1)k&=-3i-8j-2k\\
\vec{PR}&=(-7-1)i&+(-1-1)j&+(4-1) k&=-8i-2j-3k
\end{align*}
\begin{align*}\displaystyle
\vec{PQ} \times \vec{PR}&=
\begin{vmatrix}
i&j&k\\-3&-8&-2\\-8&-2&3
\end{vmatrix}\\
&=
\begin{vmatrix}
-8&-2\\-2&3
\end{vmatrix}i-
\begin{vmatrix}
-3&-2\\-8&3
\end{vmatrix}j-
\begin{vmatrix}
-3&-8\\-8&-2
\end{vmatrix}k\\
&=(-24-4)i-(-9-16)j+(6-64)k\\
&=-28i+25j-58k\\
&=\sqrt{28^2 + 25^2 + 58^2}\\
&=\sqrt{4773}
\end{align*}
$\textit{divide by half to obtain area of triangle}$
$\displaystyle \frac{\sqrt{4773}}{2}$
I just followed an example but was unsure about the signs in between matrix
and suggestions ?

$\displaystyle \begin{align*} \vec{PR} = \left( -8, -2, 3 \right) \end{align*}$, not $\displaystyle \begin{align*} \left( -8, -2, -3 \right) \end{align*}$ as you wrote, but since you have used the correct vector in your calculation of the cross product, I expect this is just a typo.

Also, the area is $\displaystyle \begin{align*} \frac{1}{2} \left| \vec{PQ} \times \vec{PR} \right| \end{align*}$, which you actually calculated, but you wrote $\displaystyle \begin{align*} \frac{1}{2} \left( \vec{PQ} \times \vec{PR} \right) \end{align*}$. PLEASE be careful with your notation!
 
Re: 12.4.9 area of a triangle given points in 3D space

thanks for the catch

yes easy sign error typos on these

Still got 5 more vector probs to do :cool:
 
Re: 12.4.9 area of a triangle given points in 3D space

Prove It said:
but you wrote $\displaystyle \begin{align*} \frac{1}{2} \left( \vec{PQ} \times \vec{PR} \right) \end{align*}$. PLEASE be careful with your notation!

where did I write this?

$\displaystyle \begin{align*}
\frac{1}{2} \left( \vec{PQ} \times \vec{PR} \right)
\end{align*}$
 
Re: 12.4.9 area of a triangle given points in 3D space

It might be simpler to do this using "Heron's formula": If the lengths of the three sides of a triangle are a, b, and c, then the area of the triangle is \sqrt{s(s- a)(s- b)(s- c)} where "s" is the "half perimeter"- s= (a+ b+ c)/2.
 
Re: 12.4.9 area of a triangle given points in 3D space

probably so but it was a homework assignment on this method.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
2K