-2.1.17 IVP y''-2y=e^{2t} \quad y(0)=2

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
SUMMARY

The initial value problem defined by the differential equation $$y'' - 2y = e^{2t}$$ with the condition $$y(0) = 2$$ is solved using the integrating factor method. The homogeneous solution is derived, and the integrating factor is identified as $$\mu(t) = e^{-2t}$$. The final solution is expressed as $$y(t) = (t + 2)e^{2t}$$. Key points include the importance of correctly identifying the integrating factor and the characteristic equation.

PREREQUISITES
  • Understanding of differential equations, specifically second-order linear equations.
  • Familiarity with integrating factors in solving differential equations.
  • Knowledge of characteristic equations and their role in solving homogeneous equations.
  • Proficiency in using exponential functions and their properties.
NEXT STEPS
  • Study the method of integrating factors in detail for first-order linear differential equations.
  • Learn about characteristic equations and their applications in solving differential equations.
  • Explore the concept of homogeneous vs. particular solutions in differential equations.
  • Practice solving initial value problems involving exponential functions and integrating factors.
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are dealing with differential equations, particularly those focusing on initial value problems and solution techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\nmh{2000}
find the solution of the given initial value problem
$$y''-2y=e^{2t} \quad y(0)=2$$

not sure about the $e^{2t}$
 
Last edited:
Physics news on Phys.org
karush said:
find the solution of the given initial value problem
$$y''-2y=e^{2t} \quad y(0)=2$$

not sure about the $e^{2t}$

First things first...what is the homogeneous solution?
 
ok first I noticed this should be
$$y'-2y=e^{2t} \quad y(0)=2$$
$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=-\exp\int 2 \, dt=-e^{2t}\\
-e^{2t}y'+2e^{2t}&=-e^{4t}
\end{align*}

so far ?
 
Last edited:
karush said:
ok first I noticed this should be
$$y'-2y=e^{2t} \quad y(0)=2$$
$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=-\exp\int 2 \, dt=-e^{2t}\\
-e^{2t}y'+2e^{2t}&=-e^{4t}
\end{align*}
so far ?

Okay, your integrating factor should be:

$$\mu(t)=\exp\left(-2\int\,dt\right)=e^{-2t}$$

You cannot "pull" the negative sign out of the exp() function like that, since $$e^{-x}\ne-e^x$$

Now, give that a go. :)
 
ok that's a very helpful thing to know
I'm going to continue this and some more tomorrow

just really hard to do this on a small tablet
 
When are you going to give up on the integrating factor as your only tool and use the Characteristic Equation?
 
tkhunny said:
When are you going to give up on the integrating factor as your only tool and use the Characteristic Equation?

What is the Characteristic Equation?

$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=\exp\int 2 \, dt=e^{-2t}\\
e^{-2t}y'+2e^{-2t}y&=1\\
(e^{-2t}y)'&=1\\
e^{-2t}y&=\int \, dt =t+c\\
y& = c_1 e^{2 t} + e^{2 t} t
\end{align*}

So if $y(0)=2$ then,
\begin{align*}
y(0)&=c e^{2(0)}+e^{2(0)}(0)=2\\
&= c(1)+0=2\\
c&=2
\end{align*}

finally
$y(t) =2 e^{2 t} + e^{2 t} t$
or
$y=(t+2)e^{2t}$

ok think this is it
 
Last edited:
karush said:
What is the Characteristic Equation?

$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=\exp\int 2 \, dt=e^{-2t}\\
e^{-2t}y'+2e^{-2t}y&=1\\
(e^{-2t}y)'&=1\\
e^{-2t}y&=\int \, dt =t+c\\
y& = c_1 e^{2 t} + e^{2 t} t
\end{align*}

So if $y(0)=2$ then,
\begin{align*}
y(0)&=c e^{2(0)}+e^{2(0)}(0)=2\\
&= c(1)+0=2\\
c&=2
\end{align*}

finally
$y(t) =2 e^{2 t} + e^{2 t} t$
or
$y=(t+2)e^{2t}$

ok think this is it

That's correct.
 
MarkFL said:
That's correct.
Almost all right.

@karush: The integrating factor is u(t), not u(v). A picky point but necessary.

-Dan
 
  • #10
topsquark said:
Almost all right.

@karush: The integrating factor is u(t), not u(v). A picky point but necessary.

-Dan

Also, $$\exp()$$ is defined as a function, and should have bracketing but I point things out once. If it's ignored then I leave it alone. I've pointed both out in the past, and that's why I was silent on them this time around.
 
  • #11
that's interesting
the textbook does not show the $\exp()$surprised this got so many views
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K