MHB -2.1.17 IVP y''-2y=e^{2t} \quad y(0)=2

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
The discussion revolves around solving the initial value problem given by the differential equation y'' - 2y = e^(2t) with the condition y(0) = 2. Participants clarify the correct form of the equation, emphasizing the importance of using the homogeneous solution and the integrating factor method. The integrating factor is identified as e^(-2t), leading to the solution y(t) = (t + 2)e^(2t). Additionally, there are notes on proper notation and terminology, such as referring to the integrating factor as u(t) instead of u(v). The final solution is confirmed to be correct, highlighting the collaborative nature of the problem-solving process.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\nmh{2000}
find the solution of the given initial value problem
$$y''-2y=e^{2t} \quad y(0)=2$$

not sure about the $e^{2t}$
 
Last edited:
Physics news on Phys.org
karush said:
find the solution of the given initial value problem
$$y''-2y=e^{2t} \quad y(0)=2$$

not sure about the $e^{2t}$

First things first...what is the homogeneous solution?
 
ok first I noticed this should be
$$y'-2y=e^{2t} \quad y(0)=2$$
$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=-\exp\int 2 \, dt=-e^{2t}\\
-e^{2t}y'+2e^{2t}&=-e^{4t}
\end{align*}

so far ?
 
Last edited:
karush said:
ok first I noticed this should be
$$y'-2y=e^{2t} \quad y(0)=2$$
$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=-\exp\int 2 \, dt=-e^{2t}\\
-e^{2t}y'+2e^{2t}&=-e^{4t}
\end{align*}
so far ?

Okay, your integrating factor should be:

$$\mu(t)=\exp\left(-2\int\,dt\right)=e^{-2t}$$

You cannot "pull" the negative sign out of the exp() function like that, since $$e^{-x}\ne-e^x$$

Now, give that a go. :)
 
ok that's a very helpful thing to know
I'm going to continue this and some more tomorrow

just really hard to do this on a small tablet
 
When are you going to give up on the integrating factor as your only tool and use the Characteristic Equation?
 
tkhunny said:
When are you going to give up on the integrating factor as your only tool and use the Characteristic Equation?

What is the Characteristic Equation?

$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=\exp\int 2 \, dt=e^{-2t}\\
e^{-2t}y'+2e^{-2t}y&=1\\
(e^{-2t}y)'&=1\\
e^{-2t}y&=\int \, dt =t+c\\
y& = c_1 e^{2 t} + e^{2 t} t
\end{align*}

So if $y(0)=2$ then,
\begin{align*}
y(0)&=c e^{2(0)}+e^{2(0)}(0)=2\\
&= c(1)+0=2\\
c&=2
\end{align*}

finally
$y(t) =2 e^{2 t} + e^{2 t} t$
or
$y=(t+2)e^{2t}$

ok think this is it
 
Last edited:
karush said:
What is the Characteristic Equation?

$\tiny{2.1.17}$
\begin{align*}
\displaystyle
y'-2y&=e^{2t} \quad y(0)=2\\
u(v)&=\exp\int 2 \, dt=e^{-2t}\\
e^{-2t}y'+2e^{-2t}y&=1\\
(e^{-2t}y)'&=1\\
e^{-2t}y&=\int \, dt =t+c\\
y& = c_1 e^{2 t} + e^{2 t} t
\end{align*}

So if $y(0)=2$ then,
\begin{align*}
y(0)&=c e^{2(0)}+e^{2(0)}(0)=2\\
&= c(1)+0=2\\
c&=2
\end{align*}

finally
$y(t) =2 e^{2 t} + e^{2 t} t$
or
$y=(t+2)e^{2t}$

ok think this is it

That's correct.
 
MarkFL said:
That's correct.
Almost all right.

@karush: The integrating factor is u(t), not u(v). A picky point but necessary.

-Dan
 
  • #10
topsquark said:
Almost all right.

@karush: The integrating factor is u(t), not u(v). A picky point but necessary.

-Dan

Also, $$\exp()$$ is defined as a function, and should have bracketing but I point things out once. If it's ignored then I leave it alone. I've pointed both out in the past, and that's why I was silent on them this time around.
 
  • #11
that's interesting
the textbook does not show the $\exp()$surprised this got so many views
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K